IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52766-9.html
   My bibliography  Save this article

Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries

Author

Listed:
  • In Taek Song

    (Platform Technology Research Center)

  • Joonkoo Kang

    (Platform Technology Research Center)

  • Jongkwan Koh

    (Platform Technology Research Center)

  • Hyunju Choi

    (Platform Technology Research Center)

  • Heemyeong Yang

    (Platform Technology Research Center)

  • Eunkyung Park

    (Platform Technology Research Center)

  • Jina Lee

    (Pohang University of Science and Technology (POSTECH))

  • Woohyung Cho

    (LG Energy Solution)

  • Yu-mi Lee

    (LG Energy Solution)

  • Seokkyeong Lee

    (LG Energy Solution)

  • Noma Kim

    (Platform Technology Research Center)

  • Minah Lee

    (Pohang University of Science and Technology (POSTECH))

  • Kihwan Kim

    (Platform Technology Research Center)

Abstract

Integrating safety features to cut off excessive current during accidental internal short circuits in Li-ion batteries (LIBs) can reduce the risk of thermal runaway. However, making this concept practical requires overcoming challenges in both material development and scalable manufacturing. Here, we demonstrate the roll-to-roll production of a safety reinforced layer (SRL) on current collectors at a rate of 5 km per day. The SRL, made of molecularly engineered polythiophene (PTh) and carbon additives, interrupts current flow during voltage drops or overheating without adversely affecting battery performance. Impact testing on 3.4-Ah pouch cells shows that the SRL reduces battery explosions from 63% to 10%. This work underscores the potential of integrating material science with manufacturing technology to enhance battery safety.

Suggested Citation

  • In Taek Song & Joonkoo Kang & Jongkwan Koh & Hyunju Choi & Heemyeong Yang & Eunkyung Park & Jina Lee & Woohyung Cho & Yu-mi Lee & Seokkyeong Lee & Noma Kim & Minah Lee & Kihwan Kim, 2024. "Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52766-9
    DOI: 10.1038/s41467-024-52766-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52766-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52766-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng Chen & Po-Chun Hsu & Jeffrey Lopez & Yuzhang Li & John W. F. To & Nan Liu & Chao Wang & Sean C. Andrews & Jia Liu & Yi Cui & Zhenan Bao, 2016. "Fast and reversible thermoresponsive polymer switching materials for safer batteries," Nature Energy, Nature, vol. 1(1), pages 1-2, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    2. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    3. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    4. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    5. Lorenzo Castelli & Qing Zhu & Trevor J. Shimokusu & Geoff Wehmeyer, 2023. "A three-terminal magnetic thermal transistor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52766-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.