IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52720-9.html
   My bibliography  Save this article

Ferromagnetic quantum critical point protected by nonsymmorphic symmetry in a Kondo metal

Author

Listed:
  • Soohyeon Shin

    (Paul Scherrer Institut)

  • Aline Ramires

    (Paul Scherrer Institut)

  • Vladimir Pomjakushin

    (Paul Scherrer Institut
    Paul Scherrer Institut)

  • Igor Plokhikh

    (Paul Scherrer Institut)

  • Ekaterina Pomjakushina

    (Paul Scherrer Institut)

Abstract

Quantum critical points (QCPs), zero-temperature phase transitions, are windows to fundamental quantum-mechanical phenomena associated with universal behaviour. Magnetic QCPs have been extensively investigated in the vicinity of antiferromagnetic order. However, QCPs are rare in metallic ferromagnets due to the coupling of the order parameter to electronic soft modes. Recently, antisymmetric spin-orbit coupling in noncentrosymmetric systems was suggested to protect ferromagnetic QCPs. Nonetheless, multiple centrosymmetric materials host FM QCPs, suggesting a more general mechanism behind their protection. In this context, CeSi2-δ, a dense Kondo lattice crystallising in a centrosymmetric structure, exhibits ferromagnetic order when Si is replaced with Ag. We report that the Ag-substitution to CeSi1.97 linearly suppresses the ferromagnetic order towards a QCP, accompanied by concurrent strange-metal behaviour. Herein, we suggest that, despite the centrosymmetric structure, spin-orbit coupling arising from the local noncentrosymmetric structure, in combination with nonsymmorphic symmetry, can protect ferromagnetic QCPs. Our findings offer a general guideline for discovering new ferromagnetic QCPs and highlight one new family of materials within which the interplay of topology and quantum phase transitions can be investigated in the context of strongly correlated systems.

Suggested Citation

  • Soohyeon Shin & Aline Ramires & Vladimir Pomjakushin & Igor Plokhikh & Ekaterina Pomjakushina, 2024. "Ferromagnetic quantum critical point protected by nonsymmorphic symmetry in a Kondo metal," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52720-9
    DOI: 10.1038/s41467-024-52720-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52720-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52720-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Park & V. A. Sidorov & F. Ronning & J.-X. Zhu & Y. Tokiwa & H. Lee & E. D. Bauer & R. Movshovich & J. L. Sarrao & J. D. Thompson, 2008. "Isotropic quantum scattering and unconventional superconductivity," Nature, Nature, vol. 456(7220), pages 366-368, November.
    2. Bin Shen & Yongjun Zhang & Yashar Komijani & Michael Nicklas & Robert Borth & An Wang & Ye Chen & Zhiyong Nie & Rui Li & Xin Lu & Hanoh Lee & Michael Smidman & Frank Steglich & Piers Coleman & Huiqiu , 2020. "Strange-metal behaviour in a pure ferromagnetic Kondo lattice," Nature, Nature, vol. 579(7797), pages 51-55, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Cai & Jinyu Zhao & Ni Ni & Jing Guo & Run Yang & Pengyu Wang & Jinyu Han & Sijin Long & Yazhou Zhou & Qi Wu & Xianggang Qiu & Tao Xiang & Robert J. Cava & Liling Sun, 2023. "The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhen-Yu Liu & Heng Jin & Yao Zhang & Kai Fan & Ting-Fei Guo & Hao-Jun Qin & Lan-Fang Zhu & Lian-Zhi Yang & Wen-Hao Zhang & Bing Huang & Ying-Shuang Fu, 2024. "Charge-density wave mediated quasi-one-dimensional Kondo lattice in stripe-phase monolayer 1T-NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52720-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.