IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52623-9.html
   My bibliography  Save this article

Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli

Author

Listed:
  • Zhi-Qiang Xu

    (University of Wollongong)

  • Slobodan Jergic

    (University of Wollongong)

  • Allen T. Y. Lo

    (University of Wollongong)

  • Alok C. Pradhan

    (University of Wollongong
    University of Wollongong)

  • Simon H. J. Brown

    (University of Wollongong
    University of Wollongong)

  • James C. Bouwer

    (University of Wollongong
    University of Wollongong)

  • Harshad Ghodke

    (University of Wollongong)

  • Peter J. Lewis

    (University of Wollongong
    Hunter Biological Solutions)

  • Gökhan Tolun

    (University of Wollongong
    University of Wollongong)

  • Aaron J. Oakley

    (University of Wollongong)

  • Nicholas E. Dixon

    (University of Wollongong
    University of Wollongong)

Abstract

Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.

Suggested Citation

  • Zhi-Qiang Xu & Slobodan Jergic & Allen T. Y. Lo & Alok C. Pradhan & Simon H. J. Brown & James C. Bouwer & Harshad Ghodke & Peter J. Lewis & Gökhan Tolun & Aaron J. Oakley & Nicholas E. Dixon, 2024. "Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52623-9
    DOI: 10.1038/s41467-024-52623-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52623-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52623-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaquan Liu & Jeungphill Hanne & Brooke M. Britton & Jared Bennett & Daehyung Kim & Jong-Bong Lee & Richard Fishel, 2016. "Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair," Nature, Nature, vol. 539(7630), pages 583-587, November.
    2. Xiao-Wen Yang & Xiao-Peng Han & Chong Han & James London & Richard Fishel & Jiaquan Liu, 2022. "MutS functions as a clamp loader by positioning MutL on the DNA during mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Gregory D. Bowman & Mike O'Donnell & John Kuriyan, 2004. "Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex," Nature, Nature, vol. 429(6993), pages 724-730, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Wen Yang & Xiao-Peng Han & Chong Han & James London & Richard Fishel & Jiaquan Liu, 2022. "MutS functions as a clamp loader by positioning MutL on the DNA during mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yanan Li & Chao Liu & Xinshuo Jia & Lulu Bi & Zhiyun Ren & Yilin Zhao & Xia Zhang & Lijuan Guo & Yanling Bao & Cong Liu & Wei Li & Bo Sun, 2024. "RPA transforms RNase H1 to a bidirectional exoribonuclease for processive RNA–DNA hybrid cleavage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52623-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.