IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52545-6.html
   My bibliography  Save this article

Contrasting genomic epidemiology between sympatric Plasmodium falciparum and Plasmodium vivax populations

Author

Listed:
  • Philipp Schwabl

    (Harvard T.H. Chan School of Public Health
    Broad Institute of MIT and Harvard)

  • Flavia Camponovo

    (Harvard T.H. Chan School of Public Health
    Swiss Tropical and Public Health Institute
    University of Basel)

  • Collette Clementson

    (Ministry of Health)

  • Angela M. Early

    (Broad Institute of MIT and Harvard)

  • Margaret Laws

    (Harvard T.H. Chan School of Public Health
    Broad Institute of MIT and Harvard)

  • David A. Forero-Peña

    (Biomedical Research and Therapeutic Vaccines Institute)

  • Oscar Noya

    (Central University of Venezuela
    Ministry of Popular Power for Health)

  • María Eugenia Grillet

    (Central University of Venezuela)

  • Mathieu Vanhove

    (Harvard T.H. Chan School of Public Health
    Broad Institute of MIT and Harvard)

  • Frank Anthony

    (Ministry of Health)

  • Kashana James

    (Ministry of Health)

  • Narine Singh

    (Ministry of Health)

  • Horace Cox

    (Ministry of Health
    Caribbean Public Health Agency)

  • Reza Niles-Robin

    (Ministry of Health)

  • Caroline O. Buckee

    (Harvard T.H. Chan School of Public Health)

  • Daniel E. Neafsey

    (Harvard T.H. Chan School of Public Health
    Broad Institute of MIT and Harvard)

Abstract

The malaria parasites Plasmodium falciparum and Plasmodium vivax differ in key biological processes and associated clinical effects, but consequences on population-level transmission dynamics are difficult to predict. This co-endemic malaria study from Guyana details important epidemiological contrasts between the species by coupling population genomics (1396 spatiotemporally matched parasite genomes, primarily from 2020–21) with sociodemographic analysis (nationwide patient census from 2019). We describe how P. falciparum forms large, interrelated subpopulations that sporadically expand but generally exhibit restrained dispersal, whereby spatial distance and patient travel statistics predict parasite identity-by-descent (IBD). Case bias towards working-age adults is also strongly pronounced. P. vivax exhibits 46% higher average nucleotide diversity (π) and 6.5x lower average IBD. It occupies a wider geographic range, without evidence for outbreak-like expansions, only microgeographic patterns of isolation-by-distance, and weaker case bias towards adults. Possible latency-relapse effects also manifest in various analyses. For example, 11.0% of patients diagnosed with P. vivax in Greater Georgetown report no recent travel to endemic zones, and P. vivax clones recur in 11 of 46 patients incidentally sampled twice during the study. Polyclonality rate is also 2.1x higher than in P. falciparum, does not trend positively with estimated incidence, and correlates uniquely to selected demographics. We discuss possible underlying mechanisms and implications for malaria control.

Suggested Citation

  • Philipp Schwabl & Flavia Camponovo & Collette Clementson & Angela M. Early & Margaret Laws & David A. Forero-Peña & Oscar Noya & María Eugenia Grillet & Mathieu Vanhove & Frank Anthony & Kashana James, 2024. "Contrasting genomic epidemiology between sympatric Plasmodium falciparum and Plasmodium vivax populations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52545-6
    DOI: 10.1038/s41467-024-52545-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52545-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52545-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Verity & Ozkan Aydemir & Nicholas F. Brazeau & Oliver J. Watson & Nicholas J. Hathaway & Melchior Kashamuka Mwandagalirwa & Patrick W. Marsh & Kyaw Thwai & Travis Fulton & Madeline Denton & And, 2020. "The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariateresa Cesare & Mulenga Mwenda & Anna E. Jeffreys & Jacob Chirwa & Chris Drakeley & Kammerle Schneider & Brenda Mambwe & Karolina Glanz & Christina Ntalla & Manuela Carrasquilla & Silvia Portugal, 2024. "Flexible and cost-effective genomic surveillance of P. falciparum malaria with targeted nanopore sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Aurel Holzschuh & Anita Lerch & Inna Gerlovina & Bakar S. Fakih & Abdul-wahid H. Al-mafazy & Erik J. Reaves & Abdullah Ali & Faiza Abbas & Mohamed Haji Ali & Mohamed Ali Ali & Manuel W. Hetzel & Joshu, 2023. "Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Patrick K. Tumwebaze & Melissa D. Conrad & Martin Okitwi & Stephen Orena & Oswald Byaruhanga & Thomas Katairo & Jennifer Legac & Shreeya Garg & David Giesbrecht & Sawyer R. Smith & Frida G. Ceja & Sam, 2022. "Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zachary R. Popkin-Hall & Karamoko Niaré & Rebecca Crudale & Alfred Simkin & Abebe A. Fola & Juan F. Sanchez & Danielle L. Pannebaker & David J. Giesbrecht & Isaac E. Kim & Özkan Aydemir & Jeffrey A. B, 2024. "High-throughput genotyping of Plasmodium vivax in the Peruvian Amazon via molecular inversion probes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52545-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.