IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52535-8.html
   My bibliography  Save this article

Indirect-to-direct bandgap transition in GaP semiconductors through quantum shell formation on ZnS nanocrystals

Author

Listed:
  • Hongjoo Shin

    (Korea Advanced Institute of Science and Technology)

  • Doosun Hong

    (Korea Institute of Science and Technology)

  • Hyunjin Cho

    (Korea Advanced Institute of Science and Technology)

  • Hanhwi Jang

    (Korea Advanced Institute of Science and Technology)

  • Geon Yeong Kim

    (Korea Advanced Institute of Science and Technology)

  • Kyeong Min Song

    (Korea Advanced Institute of Science and Technology)

  • Min-Jae Choi

    (Dongguk University)

  • Donghun Kim

    (Korea Institute of Science and Technology)

  • Yeon Sik Jung

    (Korea Advanced Institute of Science and Technology)

Abstract

Although GaP, a III-V compound semiconductor, has been extensively utilized in the optoelectronic industry for decades as a traditional material, the inherent indirect bandgap nature of GaP limits its efficiency. Here, we demonstrate an indirect-to-direct bandgap transition of GaP through the formation of quantum shells on the surface of ZnS nanocrystals. The ZnS/GaP quantum shell with a reverse-type I heterojunction, consisting of a monolayer-thin GaP shell grown atop a ZnS core, exhibits a record-high photoluminescence quantum yield of 45.4% in the violet emission range (wavelength = 409 nm), validating its direct bandgap nature. Density functional theory calculations further reveal that ZnS nanocrystals, as the growth platform for GaP quantum shells, play a crucial role in the direct bandgap formation through hybridization of electronic states with GaP. These findings suggest potential for achieving direct bandgaps in compounds that are constrained by their inherent indirect energy gaps, offering a strategy for tailoring energy structures to significantly improve efficiencies in optoelectronics and photovoltaics.

Suggested Citation

  • Hongjoo Shin & Doosun Hong & Hyunjin Cho & Hanhwi Jang & Geon Yeong Kim & Kyeong Min Song & Min-Jae Choi & Donghun Kim & Yeon Sik Jung, 2024. "Indirect-to-direct bandgap transition in GaP semiconductors through quantum shell formation on ZnS nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52535-8
    DOI: 10.1038/s41467-024-52535-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52535-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52535-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-Ho Won & Oul Cho & Taehyung Kim & Dae-Young Chung & Taehee Kim & Heejae Chung & Hyosook Jang & Junho Lee & Dongho Kim & Eunjoo Jang, 2019. "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes," Nature, Nature, vol. 575(7784), pages 634-638, November.
    2. Nitu Syed & Ali Zavabeti & Jian Zhen Ou & Md Mohiuddin & Naresh Pillai & Benjamin J. Carey & Bao Yue Zhang & Robi S. Datta & Azmira Jannat & Farjana Haque & Kibret A. Messalea & Chenglong Xu & Salvy P, 2018. "Printing two-dimensional gallium phosphate out of liquid metal," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Qiang Su & Zinan Chen & Shuming Chen, 2024. "Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Junho Bae & Yuseop Shin & Hyungyu Yoo & Yongsu Choi & Jinho Lim & Dasom Jeon & Ilsoo Kim & Myungsoo Han & Seunghyun Lee, 2022. "Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52535-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.