IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52444-w.html
   My bibliography  Save this article

CRISPR-edited human ES-derived oligodendrocyte progenitor cells improve remyelination in rodents

Author

Listed:
  • Laura J. Wagstaff

    (University of Edinburgh)

  • Nadine Bestard-Cuche

    (University of Edinburgh)

  • Maja Kaczmarek

    (University of Edinburgh)

  • Antonella Fidanza

    (University of Edinburgh)

  • Lorraine McNeil

    (University of Edinburgh)

  • Robin J. M. Franklin

    (University of Cambridge)

  • Anna C. Williams

    (University of Edinburgh)

Abstract

In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet treatable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of ‘improved’ OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edit human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplant them into rodent models of chronic lesions. Edited hOPCs display enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. We show that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS.

Suggested Citation

  • Laura J. Wagstaff & Nadine Bestard-Cuche & Maja Kaczmarek & Antonella Fidanza & Lorraine McNeil & Robin J. M. Franklin & Anna C. Williams, 2024. "CRISPR-edited human ES-derived oligodendrocyte progenitor cells improve remyelination in rodents," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52444-w
    DOI: 10.1038/s41467-024-52444-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52444-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52444-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Segel & Björn Neumann & Myfanwy F. E. Hill & Isabell P. Weber & Carlo Viscomi & Chao Zhao & Adam Young & Chibeza C. Agley & Amelia J. Thompson & Ginez A. Gonzalez & Amar Sharma & Staffan Holmq, 2019. "Niche stiffness underlies the ageing of central nervous system progenitor cells," Nature, Nature, vol. 573(7772), pages 130-134, September.
    2. Fadi J. Najm & Mayur Madhavan & Anita Zaremba & Elizabeth Shick & Robert T. Karl & Daniel C. Factor & Tyler E. Miller & Zachary S. Nevin & Christopher Kantor & Alex Sargent & Kevin L. Quick & Daniela , 2015. "Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo," Nature, Nature, vol. 522(7555), pages 216-220, June.
    3. Michael Segel & Björn Neumann & Myfanwy F. E. Hill & Isabell P. Weber & Carlo Viscomi & Chao Zhao & Adam Young & Chibeza C. Agley & Amelia J. Thompson & Ginez A. Gonzalez & Amar Sharma & Staffan Holmq, 2019. "Author Correction: Niche stiffness underlies the ageing of central nervous system progenitor cells," Nature, Nature, vol. 573(7773), pages 3-3, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samira Ghorbani & Emily Jelinek & Rajiv Jain & Benjamin Buehner & Cenxiao Li & Brian M. Lozinski & Susobhan Sarkar & Deepak K. Kaushik & Yifei Dong & Thomas N. Wight & Soheila Karimi-Abdolrezaee & Gee, 2022. "Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Alerie Guzman de la Fuente & Marie Dittmer & Elise J. Heesbeen & Nira de la Vega Gallardo & Jessica A. White & Andrew Young & Tiree McColgan & Amy Dashwood & Katie Mayne & Sonia Cabeza-Fernández & Joh, 2024. "Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Céline Labouesse & Bao Xiu Tan & Chibeza C. Agley & Moritz Hofer & Alexander K. Winkel & Giuliano G. Stirparo & Hannah T. Stuart & Christophe M. Verstreken & Carla Mulas & William Mansfield & Paul Ber, 2021. "StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Frederic Fiore & Khaleel Alhalaseh & Ram R. Dereddi & Felipe Bodaleo Torres & Ilknur Çoban & Ali Harb & Amit Agarwal, 2023. "Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    7. Patricia R. Pitrez & Luis M. Monteiro & Oliver Borgogno & Xavier Nissan & Jerome Mertens & Lino Ferreira, 2024. "Cellular reprogramming as a tool to model human aging in a dish," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ying Yang & Pekka Paivinen & Chang Xie & Alexis Leigh Krup & Tomi P. Makela & Keith E. Mostov & Jeremy F. Reiter, 2021. "Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Senyu Yao & Xiaoyue Wei & Wenrui Deng & Boyan Wang & Jianye Cai & Yinong Huang & Xiaofan Lai & Yuan Qiu & Yi Wang & Yuanjun Guan & Jiancheng Wang, 2022. "Nestin-dependent mitochondria-ER contacts define stem Leydig cell differentiation to attenuate male reproductive ageing," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. John N. Mariani & Benjamin Mansky & Pernille M. Madsen & Dennis Salinas & Deniz Kesmen & Nguyen P. T. Huynh & Nicholas J. Kuypers & Erin R. Kesel & Janna Bates & Casey Payne & Devin Chandler-Militello, 2024. "Repression of developmental transcription factor networks triggers aging-associated gene expression in human glial progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Jean-Baptiste Huré & Louis Foucault & Litsa Maria Ghayad & Corentine Marie & Nicolas Vachoud & Lucas Baudouin & Rihab Azmani & Natalija Ivjanin & Alvaro Arevalo-Nuevo & Morgane Pigache & Lamia Bouslam, 2024. "Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    12. Giampiero Porcu & Eliseo Serone & Velia De Nardis & Daniele Di Giandomenico & Giuseppe Lucisano & Marco Scardapane & Anna Poma & Antonella Ragnini-Wilson, 2015. "Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    13. Jaime Gonzalez Cardona & Matthew D Smith & Jingya Wang & Leslie Kirby & Jason T Schott & Todd Davidson & Jodi L Karnell & Katharine A Whartenby & Peter A Calabresi, 2019. "Quetiapine has an additive effect to triiodothyronine in inducing differentiation of oligodendrocyte precursor cells through induction of cholesterol biosynthesis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    14. Sophie Martin & Kevin C. Allan & Otis Pinkard & Thomas Sweet & Paul J. Tesar & Jeff Coller, 2022. "Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52444-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.