IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52359-6.html
   My bibliography  Save this article

Nanoporous amorphous carbon nanopillars with lightweight, ultrahigh strength, large fracture strain, and high damping capability

Author

Listed:
  • Zhongyuan Li

    (University of Connecticut)

  • Ayush Bhardwaj

    (University of Massachusetts Amherst)

  • Jinlong He

    (University of Wisconsin-Madison
    Sichuan University)

  • Wenxin Zhang

    (California Institute of Technology)

  • Thomas T. Tran

    (California Institute of Technology)

  • Ying Li

    (University of Wisconsin-Madison)

  • Andrew McClung

    (University of Massachusetts Amherst)

  • Sravya Nuguri

    (University of Massachusetts Amherst)

  • James J. Watkins

    (University of Massachusetts Amherst)

  • Seok-Woo Lee

    (University of Connecticut)

Abstract

Simultaneous achievement of lightweight, ultrahigh strength, large fracture strain, and high damping capability is challenging because some of these mechanical properties are mutually exclusive. Here, we utilize self-assembled polymeric carbon precursor materials in combination with scalable nano-imprinting lithography to produce nanoporous carbon nanopillars. Remarkably, nanoporosity induced via sacrificial template significantly reduces the mass density of amorphous carbon to 0.66 ~ 0.82 g cm−3 while the yield and fracture strengths of nanoporous carbon nanopillars are higher than those of most engineering materials with the similar mass density. Moreover, these nanopillars display both elastic and plastic behavior with large fracture strain. A reversible part of the sp2-to-sp3 transition produces large elastic strain and a high loss factor (up to 0.033) comparable to Ni-Ti shape memory alloys. The irreversible part of the sp2-to-sp3 transition enables plastic deformation, leading to a large fracture strain of up to 35%. These findings are substantiated using simulation studies. None of the existing structural materials exhibit a comparable combination of mass density, strength, deformability, and damping capability. Hence, the results of this study illustrate the potential of both dense and nanoporous amorphous carbon materials as superior structural nanomaterials.

Suggested Citation

  • Zhongyuan Li & Ayush Bhardwaj & Jinlong He & Wenxin Zhang & Thomas T. Tran & Ying Li & Andrew McClung & Sravya Nuguri & James J. Watkins & Seok-Woo Lee, 2024. "Nanoporous amorphous carbon nanopillars with lightweight, ultrahigh strength, large fracture strain, and high damping capability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52359-6
    DOI: 10.1038/s41467-024-52359-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52359-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52359-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron Crook & Jens Bauer & Anna Guell Izard & Cristine Santos de Oliveira & Juliana Martins de Souza e Silva & Jonathan B. Berger & Lorenzo Valdevit, 2020. "Plate-nanolattices at the theoretical limit of stiffness and strength," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. John T. Sypek & Hang Yu & Keith J. Dusoe & Gil Drachuck & Hetal Patel & Amanda M. Giroux & Alan I. Goldman & Andreas Kreyssig & Paul C. Canfield & Sergey L. Bud’ko & Christopher R. Weinberger & Seok-W, 2017. "Superelasticity and cryogenic linear shape memory effects of CaFe2As2," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Yu Zou & Pawel Kuczera & Alla Sologubenko & Takashi Sumigawa & Takayuki Kitamura & Walter Steurer & Ralph Spolenak, 2016. "Superior room-temperature ductility of typically brittle quasicrystals at small sizes," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Wang & Anirban Kundu & Bochao Xu & Sajna Hameed & Nadav Rothem & Shai Rabkin & Luka Rogić & Liam Thompson & Alexander McLeod & Martin Greven & Damjan Pelc & Ilya Sochnikov & Beena Kalisky & Avraham, 2024. "Multiferroicity in plastically deformed SrTiO3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wenqi Ouyang & Xiayi Xu & Wanping Lu & Ni Zhao & Fei Han & Shih-Chi Chen, 2023. "Ultrafast 3D nanofabrication via digital holography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhenyang Gao & Xiaolin Zhang & Yi Wu & Minh-Son Pham & Yang Lu & Cunjuan Xia & Haowei Wang & Hongze Wang, 2024. "Damage-programmable design of metamaterials achieving crack-resisting mechanisms seen in nature," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yingqi Jia & Ke Liu & Xiaojia Shelly Zhang, 2024. "Modulate stress distribution with bio-inspired irregular architected materials towards optimal tissue support," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ting Yang & Zian Jia & Ziling Wu & Hongshun Chen & Zhifei Deng & Liuni Chen & Yunhui Zhu & Ling Li, 2022. "High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52359-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.