IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52235-3.html
   My bibliography  Save this article

Mechanistic analysis of Riboswitch Ligand interactions provides insights into pharmacological control over gene expression

Author

Listed:
  • Shaifaly Parmar

    (National Cancer Institute)

  • Desta Doro Bume

    (National Cancer Institute)

  • Colleen M. Connelly

    (National Cancer Institute)

  • Robert E. Boer

    (National Cancer Institute)

  • Peri R. Prestwood

    (National Cancer Institute)

  • Zhen Wang

    (Depixus SAS)

  • Henning Labuhn

    (Depixus SAS)

  • Krishshanthi Sinnadurai

    (Depixus SAS)

  • Adeline Feri

    (Depixus SAS)

  • Jimmy Ouellet

    (Depixus SAS)

  • Philip Homan

    (National Institutes of Health
    Frederick National Laboratory for Cancer Research)

  • Tomoyuki Numata

    (Kyushu University)

  • John S. Schneekloth

    (National Cancer Institute)

Abstract

Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.

Suggested Citation

  • Shaifaly Parmar & Desta Doro Bume & Colleen M. Connelly & Robert E. Boer & Peri R. Prestwood & Zhen Wang & Henning Labuhn & Krishshanthi Sinnadurai & Adeline Feri & Jimmy Ouellet & Philip Homan & Tomo, 2024. "Mechanistic analysis of Riboswitch Ligand interactions provides insights into pharmacological control over gene expression," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52235-3
    DOI: 10.1038/s41467-024-52235-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52235-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52235-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Colleen M. Connelly & Tomoyuki Numata & Robert E. Boer & Michelle H. Moon & Ranu S. Sinniah & Joseph J. Barchi & Adrian R. Ferré-D’Amaré & John S. Schneekloth, 2019. "Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. James E. Johnson Jr & Francis E. Reyes & Jacob T. Polaski & Robert T. Batey, 2012. "B12 cofactors directly stabilize an mRNA regulatory switch," Nature, Nature, vol. 492(7427), pages 133-137, December.
    3. Boyang Hua & Christopher P. Jones & Jaba Mitra & Peter J. Murray & Rebecca Rosenthal & Adrian R. Ferré-D’Amaré & Taekjip Ha, 2020. "Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jienyu Ding & Yun-Tzai Lee & Yuba Bhandari & Charles D. Schwieters & Lixin Fan & Ping Yu & Sergey G. Tarosov & Jason R. Stagno & Buyong Ma & Ruth Nussinov & Alan Rein & Jinwei Zhang & Yun-Xing Wang, 2023. "Visualizing RNA conformational and architectural heterogeneity in solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Adrien Chauvier & Shiba S. Dandpat & Rosa Romero & Nils G. Walter, 2024. "A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Courtney E. Szyjka & Eric J. Strobel, 2023. "Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Griffin M. Schroeder & Chapin E. Cavender & Maya E. Blau & Jermaine L. Jenkins & David H. Mathews & Joseph E. Wedekind, 2022. "A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yanyan Xue & Jun Li & Dian Chen & Xizhu Zhao & Liang Hong & Yu Liu, 2023. "Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52235-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.