IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51680-4.html
   My bibliography  Save this article

Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics

Author

Listed:
  • William A. Hofstadter

    (Princeton University)

  • Katelyn C. Cook

    (Princeton University)

  • Elene Tsopurashvili

    (Princeton University)

  • Robert Gebauer

    (Universität Hamburg
    Centre for Structural Systems Biology, Leibniz Institute of Virology)

  • Vojtěch Pražák

    (Universität Hamburg
    Centre for Structural Systems Biology, Leibniz Institute of Virology)

  • Emily A. Machala

    (Universität Hamburg
    Centre for Structural Systems Biology, Leibniz Institute of Virology)

  • Ji Woo Park

    (Princeton University)

  • Kay Grünewald

    (Universität Hamburg
    Centre for Structural Systems Biology, Leibniz Institute of Virology)

  • Emmanuelle R. J. Quemin

    (Universität Hamburg
    Centre for Structural Systems Biology, Leibniz Institute of Virology
    Institute for Integrative Biology of the Cell, CNRS UMR9198)

  • Ileana M. Cristea

    (Princeton University)

Abstract

The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.

Suggested Citation

  • William A. Hofstadter & Katelyn C. Cook & Elene Tsopurashvili & Robert Gebauer & Vojtěch Pražák & Emily A. Machala & Ji Woo Park & Kay Grünewald & Emmanuelle R. J. Quemin & Ileana M. Cristea, 2024. "Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51680-4
    DOI: 10.1038/s41467-024-51680-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51680-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51680-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atsushi Hoshino & Wei-jia Wang & Shogo Wada & Chris McDermott-Roe & Chantell S. Evans & Bridget Gosis & Michael P. Morley & Komal S. Rathi & Jian Li & Kristina Li & Steven Yang & Meagan J. McManus & C, 2019. "The ADP/ATP translocase drives mitophagy independent of nucleotide exchange," Nature, Nature, vol. 575(7782), pages 375-379, November.
    2. Martin Picard & Meagan J. McManus & György Csordás & Péter Várnai & Gerald W. Dorn II & Dewight Williams & György Hajnóczky & Douglas C. Wallace, 2015. "Trans-mitochondrial coordination of cristae at regulated membrane junctions," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    3. Yuki Hanada & Naotada Ishihara & Lixiang Wang & Hidenori Otera & Takaya Ishihara & Takumi Koshiba & Katsuyoshi Mihara & Yoshihiro Ogawa & Masatoshi Nomura, 2020. "MAVS is energized by Mff which senses mitochondrial metabolism via AMPK for acute antiviral immunity," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshito Minami & Atsushi Hoshino & Yusuke Higuchi & Masahide Hamaguchi & Yusaku Kaneko & Yuhei Kirita & Shunta Taminishi & Toshiyuki Nishiji & Akiyuki Taruno & Michiaki Fukui & Zoltan Arany & Satoaki , 2023. "Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Cyril Statzer & Jin Meng & Richard Venz & Monet Bland & Stacey Robida-Stubbs & Krina Patel & Dunja Petrovic & Raffaella Emsley & Pengpeng Liu & Ianessa Morantte & Cole Haynes & William B. Mair & Alban, 2022. "ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Jonas Benjamin Michaelis & Melinda Elaine Brunstein & Süleyman Bozkurt & Ludovico Alves & Martin Wegner & Manuel Kaulich & Christian Pohl & Christian Münch, 2022. "Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Cao Wang & Shupei Qiao & Yufang Zhao & Hui Tian & Wei Yan & Xiaolu Hou & Ruiqi Wang & Bosong Zhang & Chaofan Yang & Fuxing Zhu & Yanwen Jiao & Jiaming Jin & Yue Chen & Weiming Tian, 2023. "The KLF7/PFKL/ACADL axis modulates cardiac metabolic remodelling during cardiac hypertrophy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51680-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.