IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51430-6.html
   My bibliography  Save this article

Dry hydroclimates in the late Palaeocene-early Eocene hothouse world

Author

Listed:
  • Victor A. Piedrahita

    (Chinese Academy of Sciences
    Qingdao Marine Science and Technology Center
    Southern Marine Science and Engineering Guangdong Laboratory
    Research School of Earth Sciences, Australian National University)

  • Andrew P. Roberts

    (Research School of Earth Sciences, Australian National University)

  • Eelco J. Rohling

    (Utrecht University
    National Oceanography Centre)

  • David Heslop

    (Research School of Earth Sciences, Australian National University)

  • Xiang Zhao

    (Research School of Earth Sciences, Australian National University)

  • Simone Galeotti

    (Università degli Studi di Urbino
    Institute for Climate Change Solutions)

  • Fabio Florindo

    (Institute for Climate Change Solutions
    Istituto Nazionale di Geofisica e Vulcanologia)

  • Katharine M. Grant

    (Research School of Earth Sciences, Australian National University)

  • Pengxiang Hu

    (Research School of Earth Sciences, Australian National University)

  • Jinhua Li

    (Chinese Academy of Sciences
    Qingdao Marine Science and Technology Center
    Southern Marine Science and Engineering Guangdong Laboratory
    University of Chinese Academy Sciences)

Abstract

Extreme global warming can produce hydroclimate changes that remain poorly understood for sub-tropical latitudes. Late Palaeocene-early Eocene (LPEE; ~58-52 Ma) proto-Mediterranean zones of the western Tethys offer opportunities to assess hydroclimate responses to massive carbon cycle perturbations. Here, we reconstruct LPEE hydroclimate conditions of these regions and find that carbon cycle perturbations exerted controls on orbitally forced hydroclimate variability. Long-term (~6 Myr) carbon cycle changes induced a gradual precipitation/moisture reduction, which was exacerbated by some short-lived (

Suggested Citation

  • Victor A. Piedrahita & Andrew P. Roberts & Eelco J. Rohling & David Heslop & Xiang Zhao & Simone Galeotti & Fabio Florindo & Katharine M. Grant & Pengxiang Hu & Jinhua Li, 2024. "Dry hydroclimates in the late Palaeocene-early Eocene hothouse world," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51430-6
    DOI: 10.1038/s41467-024-51430-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51430-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51430-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcus Gutjahr & Andy Ridgwell & Philip F. Sexton & Eleni Anagnostou & Paul N. Pearson & Heiko Pälike & Richard D. Norris & Ellen Thomas & Gavin L. Foster, 2017. "Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum," Nature, Nature, vol. 548(7669), pages 573-577, August.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. Mark Pagani & Nikolai Pedentchouk & Matthew Huber & Appy Sluijs & Stefan Schouten & Henk Brinkhuis & Jaap S. Sinninghe Damsté & Gerald R. Dickens, 2006. "Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum," Nature, Nature, vol. 442(7103), pages 671-675, August.
    4. A. Licht & M. van Cappelle & H. A. Abels & J.-B. Ladant & J. Trabucho-Alexandre & C. France-Lanord & Y. Donnadieu & J. Vandenberghe & T. Rigaudier & C. Lécuyer & D. Terry Jr & R. Adriaens & A. Boura &, 2014. "Asian monsoons in a late Eocene greenhouse world," Nature, Nature, vol. 513(7519), pages 501-506, September.
    5. Mark Pagani & Nikolai Pedentchouk & Matthew Huber & Appy Sluijs & Stefan Schouten & Henk Brinkhuis & Jaap S. Sinninghe Damsté & Gerald R. Dickens & (Jan Backman & Steve Clemens & Thomas Cronin & Frédé, 2006. "Erratum: Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum," Nature, Nature, vol. 443(7111), pages 598-598, October.
    6. Ran Feng & Tripti Bhattacharya & Bette L. Otto-Bliesner & Esther C. Brady & Alan M. Haywood & Julia C. Tindall & Stephen J. Hunter & Ayako Abe-Ouchi & Wing-Le Chan & Masa Kageyama & Camille Contoux & , 2022. "Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingsong Li & Timothy J. Bralower & Lee R. Kump & Jean M. Self-Trail & James C. Zachos & William D. Rush & Marci M. Robinson, 2022. "Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Fei Zhang & Mathieu Dellinger & Robert G. Hilton & Jimin Yu & Mark B. Allen & Alexander L. Densmore & Hui Sun & Zhangdong Jin, 2022. "Hydrological control of river and seawater lithium isotopes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    4. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    5. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    6. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    8. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    10. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    11. Xiaowen Zhuang & Yurui Fan & Yongping Li & Chuanbao Wu, 2023. "Evaluation Climate Change Impacts on Water Resources Over the Upper Reach of the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2875-2889, May.
    12. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    13. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    14. Marianne Fay & Rachel I. Block & Jane Ebinger, 2010. "Adapting to Climate Change in Eastern Europe and Central Asia," World Bank Publications - Books, The World Bank Group, number 2407.
    15. Yan Ma & Arvid Bring & Zahra Kalantari & Georgia Destouni, 2019. "Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in High-Latitude Regions," IJERPH, MDPI, vol. 16(19), pages 1-11, October.
    16. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    17. Zhenliang Yin & Qi Feng & Linshan Yang & Xiaohu Wen & Jianhua Si & Songbing Zou, 2017. "Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    18. Zhengquan Yao & Xuefa Shi & Zhengtang Guo & Xinzhou Li & B. Nagender Nath & Christian Betzler & Hui Zhang & Sebastian Lindhorst & Pavan Miriyala, 2023. "Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    20. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51430-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.