IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51319-4.html
   My bibliography  Save this article

Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations

Author

Listed:
  • Yue Deng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Deng Pan

    (Chinese Academy of Sciences)

  • Yuliang Jin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Jamming is an athermal transition between flowing and rigid states in amorphous systems such as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared systems with quasistatic deformations, in two and three dimensions. Based on scaling analyses, we show that fluctuations of the jamming density in finite-sized systems have important consequences on the finite-size effects of various quantities, resulting in a square relationship between disconnected and connected susceptibilities, a key signature of the first-order transition with quenched disorder. This study puts the jamming transition into the category of a broad class of transitions in disordered systems where sample-to-sample fluctuations dominate over thermal fluctuations, suggesting that the nature and behavior of the jamming transition might be better understood within the developed theoretical framework of the athermally driven random-field Ising model.

Suggested Citation

  • Yue Deng & Deng Pan & Yuliang Jin, 2024. "Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51319-4
    DOI: 10.1038/s41467-024-51319-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51319-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51319-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Charbonneau & Jorge Kurchan & Giorgio Parisi & Pierfrancesco Urbani & Francesco Zamponi, 2014. "Fractal free energy landscapes in structural glasses," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    2. D. J. Pine & J. P. Gollub & J. F. Brady & A. M. Leshansky, 2005. "Chaos and threshold for irreversibility in sheared suspensions," Nature, Nature, vol. 438(7070), pages 997-1000, December.
    3. Chaoming Song & Ping Wang & Hernán A. Makse, 2008. "A phase diagram for jammed matter," Nature, Nature, vol. 453(7195), pages 629-632, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyeyune-Nyombi, Eru & Morone, Flaviano & Liu, Wenwei & Li, Shuiqing & Gilchrist, M. Lane & Makse, Hernán A., 2018. "High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1387-1395.
    2. Leo Zella & Jaeyun Moon & Takeshi Egami, 2024. "Ripples in the bottom of the potential energy landscape of metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Jin, Yuliang & Makse, Hernán A., 2010. "A first-order phase transition defines the random close packing of hard spheres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5362-5379.
    4. Zhang, Dongjian & Ma, Qihua & Dong, Hailiang & Liao, He & Liu, Xiangyu & Zha, Yibin & Zhang, Xiaoxiao & Qian, Xiaomin & Liu, Jin & Gan, Xuehui, 2023. "Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the Polyester Filament Yarn tension in the spinning process," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Yoshio Kono & Koji Ohara & Nozomi M. Kondo & Hiroki Yamada & Satoshi Hiroi & Fumiya Noritake & Kiyofumi Nitta & Oki Sekizawa & Yuji Higo & Yoshinori Tange & Hirokatsu Yumoto & Takahisa Koyama & Hirosh, 2022. "Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Agapie Stefan C. & Whitlock Paula A., 2010. "Random packing of hyperspheres and Marsaglia's parking lot test," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 197-209, January.
    7. Stéphan T. Grilli & Mike Shelby & Olivier Kimmoun & Guillaume Dupont & Dmitry Nicolsky & Gangfeng Ma & James T. Kirby & Fengyan Shi, 2017. "Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 353-391, March.
    8. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    9. Sunny Gupta & Xiaochen Yang & Gerbrand Ceder, 2023. "What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Ning Cui & Junhong Li, 2018. "Dynamic Analysis of a Particle Motion System," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    11. Tejada, Ignacio G., 2011. "A new statistical mechanics approach to dense granular media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2664-2677.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51319-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.