IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30028-w.html
   My bibliography  Save this article

Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure

Author

Listed:
  • Yoshio Kono

    (Geodynamics Research Center, Ehime University)

  • Koji Ohara

    (Japan Synchrotron Radiation Research Institute)

  • Nozomi M. Kondo

    (Geodynamics Research Center, Ehime University)

  • Hiroki Yamada

    (Japan Synchrotron Radiation Research Institute)

  • Satoshi Hiroi

    (Japan Synchrotron Radiation Research Institute)

  • Fumiya Noritake

    (Graduate Faculty of Interdisciplinary Research, University of Yamanashi)

  • Kiyofumi Nitta

    (Japan Synchrotron Radiation Research Institute)

  • Oki Sekizawa

    (Japan Synchrotron Radiation Research Institute)

  • Yuji Higo

    (Japan Synchrotron Radiation Research Institute)

  • Yoshinori Tange

    (Japan Synchrotron Radiation Research Institute)

  • Hirokatsu Yumoto

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Takahisa Koyama

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Hiroshi Yamazaki

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Yasunori Senba

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Haruhiko Ohashi

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Shunji Goto

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Ichiro Inoue

    (RIKEN SPring-8 Center)

  • Yujiro Hayashi

    (RIKEN SPring-8 Center)

  • Kenji Tamasaku

    (RIKEN SPring-8 Center)

  • Taito Osaka

    (RIKEN SPring-8 Center)

  • Jumpei Yamada

    (RIKEN SPring-8 Center)

  • Makina Yabashi

    (RIKEN SPring-8 Center)

Abstract

Bimodal behavior in the translational order of silicon’s second shell in SiO2 liquid at high temperatures and high pressures has been recognized in theoretical studies, and the fraction of the S state with high tetrahedrality is considered as structural origin of the anomalous properties. However, it has not been well identified in experiment. Here we show experimental evidence of a bimodal behavior in the translational order of silicon’s second shell in SiO2 glass under pressure. SiO2 glass shows tetrahedral symmetry structure with separation between the first and second shells of silicon at low pressures, which corresponds to the S state structure reported in SiO2 liquid. On the other hand, at high pressures, the silicon’s second shell collapses onto the first shell, and more silicon atoms locate in the first shell. These observations indicate breaking of local tetrahedral symmetry in SiO2 glass under pressure, as well as SiO2 liquid.

Suggested Citation

  • Yoshio Kono & Koji Ohara & Nozomi M. Kondo & Hiroki Yamada & Satoshi Hiroi & Fumiya Noritake & Kiyofumi Nitta & Oki Sekizawa & Yuji Higo & Yoshinori Tange & Hirokatsu Yumoto & Takahisa Koyama & Hirosh, 2022. "Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30028-w
    DOI: 10.1038/s41467-022-30028-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30028-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30028-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaoming Song & Ping Wang & Hernán A. Makse, 2008. "A phase diagram for jammed matter," Nature, Nature, vol. 453(7195), pages 629-632, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomoki Fujita & Yuhan Chen & Yoshio Kono & Seiya Takahashi & Hidetaka Kasai & Davide Campi & Marco Bernasconi & Koji Ohara & Hirokatsu Yumoto & Takahisa Koyama & Hiroshi Yamazaki & Yasunori Senba & Ha, 2023. "Pressure-induced reversal of Peierls-like distortions elicits the polyamorphic transition in GeTe and GeSe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    2. Kyeyune-Nyombi, Eru & Morone, Flaviano & Liu, Wenwei & Li, Shuiqing & Gilchrist, M. Lane & Makse, Hernán A., 2018. "High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1387-1395.
    3. Yue Deng & Deng Pan & Yuliang Jin, 2024. "Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jin, Yuliang & Makse, Hernán A., 2010. "A first-order phase transition defines the random close packing of hard spheres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5362-5379.
    5. Agapie Stefan C. & Whitlock Paula A., 2010. "Random packing of hyperspheres and Marsaglia's parking lot test," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 197-209, January.
    6. Stéphan T. Grilli & Mike Shelby & Olivier Kimmoun & Guillaume Dupont & Dmitry Nicolsky & Gangfeng Ma & James T. Kirby & Fengyan Shi, 2017. "Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 353-391, March.
    7. Tejada, Ignacio G., 2011. "A new statistical mechanics approach to dense granular media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2664-2677.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30028-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.