IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51234-8.html
   My bibliography  Save this article

Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems

Author

Listed:
  • Ian W. Hamley

    (University of Reading, Whiteknights)

  • Anindyasundar Adak

    (University of Reading, Whiteknights)

  • Valeria Castelletto

    (University of Reading, Whiteknights)

Abstract

Lipopeptides can self-assemble into diverse nanostructures which can be programmed to incorporate peptide sequences to achieve a remarkable range of bioactivities. Here, the influence of peptide sequence and chirality on micelle structure and interactions is investigated in a series of lipopeptides bearing two lysine or D-lysine residues and tyrosine or tryptophan residues, attached to a hexadecyl lipid chain. All molecules self-assemble into micelles above a critical micelle concentration (CMC). Small-angle x-ray scattering (SAXS) is used to probe micelle shape and structure from the form factor and to probe inter-micellar interactions via analysis of structure factor. The CMC is obtained consistently from surface tension and electrical conductivity measurements. We introduce a method to obtain the zeta potential from the SAXS structure factor which is in good agreement with directly measured values. Atomistic molecular dynamics simulations provide insights into molecular packing and conformation within the lipopeptide micelles which constitute model self-assembling colloidal systems and biomaterials.

Suggested Citation

  • Ian W. Hamley & Anindyasundar Adak & Valeria Castelletto, 2024. "Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51234-8
    DOI: 10.1038/s41467-024-51234-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51234-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51234-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna Stradner & Helen Sedgwick & Frédéric Cardinaux & Wilson C. K. Poon & Stefan U. Egelhaaf & Peter Schurtenberger, 2004. "Equilibrium cluster formation in concentrated protein solutions and colloids," Nature, Nature, vol. 432(7016), pages 492-495, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Hooshanginejad & Jack-William Barotta & Victoria Spradlin & Giuseppe Pucci & Robert Hunt & Daniel M. Harris, 2024. "Interactions and pattern formation in a macroscopic magnetocapillary SALR system of mermaid cereal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chi Zhang & José Muñetón Díaz & Augustin Muster & Diego R. Abujetas & Luis S. Froufe-Pérez & Frank Scheffold, 2024. "Determining intrinsic potentials and validating optical binding forces between colloidal particles using optical tweezers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Emmanuel Stiakakis & Niklas Jung & Nataša Adžić & Taras Balandin & Emmanuel Kentzinger & Ulrich Rücker & Ralf Biehl & Jan K. G. Dhont & Ulrich Jonas & Christos N. Likos, 2021. "Self assembling cluster crystals from DNA based dendritic nanostructures," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Sondra S. Teske & Corrella S. Detweiler, 2015. "The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells," IJERPH, MDPI, vol. 12(2), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51234-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.