IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51089-z.html
   My bibliography  Save this article

A co-ordinated transcriptional programme in the maternal liver supplies long chain polyunsaturated fatty acids to the conceptus using phospholipids

Author

Listed:
  • Risha Amarsi

    (Faculty of Life Sciences and Medicine, King’s College London
    Francis Crick Institute)

  • Samuel Furse

    (Richmond
    University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road)

  • Mary A. M. Cleaton

    (University of Cambridge)

  • Sarah Maurel

    (UPS)

  • Alice L. Mitchell

    (King’s College London, Guy’s Campus)

  • Anne C. Ferguson-Smith

    (University of Cambridge)

  • Nicolas Cenac

    (UPS)

  • Catherine Williamson

    (King’s College London, Guy’s Campus)

  • Albert Koulman

    (University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road)

  • Marika Charalambous

    (Faculty of Life Sciences and Medicine, King’s College London
    Francis Crick Institute)

Abstract

The long and very long chain polyunsaturated fatty acids (LC-PUFAs) are preferentially transported by the mother to the fetus. Failure to supply LC-PUFAs is strongly linked with stillbirth, fetal growth restriction, and impaired neurodevelopmental outcomes. However, dietary supplementation during pregnancy is unable to simply reverse these outcomes, suggesting imperfectly understood interactions between dietary fatty acid intake and the molecular mechanisms of maternal supply. Here we employ a comprehensive approach combining untargeted and targeted lipidomics with transcriptional profiling of maternal and fetal tissues in mouse pregnancy. Comparison of wild-type mice with genetic models of impaired lipid metabolism allows us to describe maternal hepatic adaptations required to provide LC-PUFAs to the developing fetus. A late pregnancy-specific, selective activation of the Liver X Receptor signalling pathway dramatically increases maternal supply of LC-PUFAs within circulating phospholipids. Crucially, genetic ablation of this pathway in the mother reduces LC-PUFA accumulation by the fetus, specifically of docosahexaenoic acid (DHA), a critical nutrient for brain development.

Suggested Citation

  • Risha Amarsi & Samuel Furse & Mary A. M. Cleaton & Sarah Maurel & Alice L. Mitchell & Anne C. Ferguson-Smith & Nicolas Cenac & Catherine Williamson & Albert Koulman & Marika Charalambous, 2024. "A co-ordinated transcriptional programme in the maternal liver supplies long chain polyunsaturated fatty acids to the conceptus using phospholipids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51089-z
    DOI: 10.1038/s41467-024-51089-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51089-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51089-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long N. Nguyen & Dongliang Ma & Guanghou Shui & Peiyan Wong & Amaury Cazenave-Gassiot & Xiaodong Zhang & Markus R. Wenk & Eyleen L. K. Goh & David L. Silver, 2014. "Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid," Nature, Nature, vol. 509(7501), pages 503-506, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhui Wang & Kun Wang & Kangkang Song & Zon Weng Lai & Pengfei Li & Dongying Li & Yajie Sun & Ye Mei & Chen Xu & Maofu Liao, 2024. "Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Tanja Emmerich & Zuchra Zakirova & Nancy Klimas & Kimberly Sullivan & Ashok K Shetty & James E Evans & Ghania Ait-Ghezala & Gary S Laco & Bharathi Hattiangady & Geetha A Shetty & Michael Mullan & Gogc, 2017. "Phospholipid profiling of plasma from GW veterans and rodent models to identify potential biomarkers of Gulf War Illness," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    3. Chi Nguyen & Hsiang-Ting Lei & Louis Tung Faat Lai & Marc J. Gallenito & Xuelang Mu & Doreen Matthies & Tamir Gonen, 2023. "Lipid flipping in the omega-3 fatty-acid transporter," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51089-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.