IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50972-z.html
   My bibliography  Save this article

Rational design of metal–organic cages to increase the number of components via dihedral angle control

Author

Listed:
  • Tsukasa Abe

    (The University of Tokyo)

  • Keisuke Takeuchi

    (The University of Tokyo)

  • Masahiro Higashi

    (Nagoya University)

  • Hirofumi Sato

    (Kyoto University
    Kyoto University)

  • Shuichi Hiraoka

    (The University of Tokyo)

Abstract

The general principles of discrete, large self-assemblies composed of numerous components are not unveiled and the artificial formation of such entities is a challenging topic. In metal–organic cages, design strategies for tuning the coordination directions in multitopic ligands by the bend and twist angles were previously developed to solve this problem. In this study, the importance of remote geometric communications between components is emphasized, realizing several types of metal–organic assemblies based on dihedral angle control in multitopic ligands although they have the same coordination directions. Self-assembly of a tritopic ligand with dihedral angles θ = 36.5° and a cis-protected Pd(II) ion affords M9L6 and M12L8 cages as kinetic and thermodynamic products, respectively, whereas an M12L8 sheet is formed when θ = 90°. Geometric analyses of strains in the subcomponent rings reveals that remote geometric communications among neighboring multitopic ligands through coordination bonds are key for large assemblies.

Suggested Citation

  • Tsukasa Abe & Keisuke Takeuchi & Masahiro Higashi & Hirofumi Sato & Shuichi Hiraoka, 2024. "Rational design of metal–organic cages to increase the number of components via dihedral angle control," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50972-z
    DOI: 10.1038/s41467-024-50972-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50972-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50972-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daishi Fujita & Yoshihiro Ueda & Sota Sato & Nobuhiro Mizuno & Takashi Kumasaka & Makoto Fujita, 2016. "Self-assembly of tetravalent Goldberg polyhedra from 144 small components," Nature, Nature, vol. 540(7634), pages 563-566, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Lian & Jing He & Lin Liu & Yanqing Fan & Xuebo Chen & Hua Jiang, 2023. "[2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhi Wang & Yan-Jie Zhu & Ying-Zhou Li & Gui-Lin Zhuang & Ke-Peng Song & Zhi-Yong Gao & Jian-Min Dou & Mohamedally Kurmoo & Chen-Ho Tung & Di Sun, 2022. "Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50972-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.