IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50755-6.html
   My bibliography  Save this article

Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses

Author

Listed:
  • Shan Hu

    (Xiamen University)

  • Yihan Chen

    (Xiamen University)

  • Chongzhen Qian

    (Xiamen University)

  • Hui Ren

    (Xiamen University)

  • Xinwen Liang

    (Xiamen University)

  • Wenjing Tao

    (Xiamen University)

  • Yanling Chen

    (Xiamen University)

  • Jue Wang

    (Xiamen University)

  • Yuan Dong

    (Xiamen University)

  • Jiupan Han

    (Xiamen University)

  • Xinhao Ouyang

    (Xiamen University)

  • Xi Huang

    (Xiamen University)

Abstract

In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.

Suggested Citation

  • Shan Hu & Yihan Chen & Chongzhen Qian & Hui Ren & Xinwen Liang & Wenjing Tao & Yanling Chen & Jue Wang & Yuan Dong & Jiupan Han & Xinhao Ouyang & Xi Huang, 2024. "Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50755-6
    DOI: 10.1038/s41467-024-50755-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50755-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50755-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Wu & Qi Hu & Zhen Yan & Wen Chen & Chuangye Yan & Xi Huang & Jing Zhang & Panyu Yang & Haiteng Deng & Jiawei Wang & XingWang Deng & Yigong Shi, 2012. "Structural basis of ultraviolet-B perception by UVR8," Nature, Nature, vol. 484(7393), pages 214-219, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Liu & Giovanni Giuriani & Anezka Havlikova & Dezhi Li & Douglas J. Lamont & Susanne Neugart & Christos N. Velanis & Jan Petersen & Ute Hoecker & John M. Christie & Gareth I. Jenkins, 2024. "Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Seong Ok Kim & So Ri Yun & Hyosub Lee & Junbeom Jo & Doo-Sik Ahn & Doyeong Kim & Irina Kosheleva & Robert Henning & Jungmin Kim & Changin Kim & Seyoung You & Hanui Kim & Sang Jin Lee & Hyotcherl Ihee, 2024. "Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50755-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.