IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50695-1.html
   My bibliography  Save this article

Strongly coupled edge states in a graphene quantum Hall interferometer

Author

Listed:
  • Thomas Werkmeister

    (Harvard University)

  • James R. Ehrets

    (Harvard University)

  • Yuval Ronen

    (Harvard University
    Weizmann Institute of Science)

  • Marie E. Wesson

    (Harvard University)

  • Danial Najafabadi

    (Harvard University)

  • Zezhu Wei

    (Brown University
    Brown University)

  • Kenji Watanabe

    (National Institute for Materials Science, 1-1 Namiki)

  • Takashi Taniguchi

    (National Institute for Materials Science, 1-1 Namiki)

  • D. E. Feldman

    (Brown University
    Brown University)

  • Bertrand I. Halperin

    (Harvard University)

  • Amir Yacoby

    (Harvard University
    Harvard University)

  • Philip Kim

    (Harvard University
    Harvard University)

Abstract

Electronic interferometers using the chiral, one-dimensional (1D) edge channels of the quantum Hall effect (QHE) can demonstrate a wealth of fundamental phenomena. The recent observation of phase jumps in a Fabry-Pérot (FP) interferometer revealed anyonic quasiparticle exchange statistics in the fractional QHE. When multiple integer edge channels are involved, FP interferometers have exhibited anomalous Aharonov-Bohm (AB) interference frequency doubling, suggesting putative pairing of electrons into $${{\boldsymbol{2}}}{{\boldsymbol{e}}}$$ 2 e quasiparticles. Here, we use a highly tunable graphene-based QHE FP interferometer to observe the connection between interference phase jumps and AB frequency doubling, unveiling how strong repulsive interaction between edge channels leads to the apparent pairing phenomena. By tuning electron density in-situ from filling factor $${{\boldsymbol{\nu }}} \, \, {{\boldsymbol{7}}}$$ ν > 7 , we tune the interaction strength and observe periodic interference phase jumps leading to AB frequency doubling. Our observations demonstrate that the combination of repulsive interaction between the spin-split $${{\boldsymbol{\nu }}}={{\boldsymbol{2}}}$$ ν = 2 edge channels and charge quantization is sufficient to explain the frequency doubling, through a near-perfect charge screening between the localized and extended edge channels. Our results show that interferometers are sensitive probes of microscopic interactions and enable future experiments studying correlated electrons in 1D channels using density-tunable graphene.

Suggested Citation

  • Thomas Werkmeister & James R. Ehrets & Yuval Ronen & Marie E. Wesson & Danial Najafabadi & Zezhu Wei & Kenji Watanabe & Takashi Taniguchi & D. E. Feldman & Bertrand I. Halperin & Amir Yacoby & Philip , 2024. "Strongly coupled edge states in a graphene quantum Hall interferometer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50695-1
    DOI: 10.1038/s41467-024-50695-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50695-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50695-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Marguerite & J. Birkbeck & A. Aharon-Steinberg & D. Halbertal & K. Bagani & I. Marcus & Y. Myasoedov & A. K. Geim & D. J. Perello & E. Zeldov, 2019. "Publisher Correction: Imaging work and dissipation in the quantum Hall state in graphene," Nature, Nature, vol. 576(7786), pages 6-6, December.
    2. V. Freulon & A. Marguerite & J.-M. Berroir & B. Plaçais & A. Cavanna & Y. Jin & G. Fève, 2015. "Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    3. Katrin Zimmermann & Anna Jordan & Frédéric Gay & Kenji Watanabe & Takashi Taniguchi & Zheng Han & Vincent Bouchiat & Hermann Sellier & Benjamin Sacépé, 2017. "Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    4. H.K. Choi & I. Sivan & A. Rosenblatt & M. Heiblum & V. Umansky & D. Mahalu, 2015. "Robust electron pairing in the integer quantum hall effect regime," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. A. Marguerite & J. Birkbeck & A. Aharon-Steinberg & D. Halbertal & K. Bagani & I. Marcus & Y. Myasoedov & A. K. Geim & D. J. Perello & E. Zeldov, 2019. "Imaging work and dissipation in the quantum Hall state in graphene," Nature, Nature, vol. 575(7784), pages 628-633, November.
    6. Sungmin Kim & Johannes Schwenk & Daniel Walkup & Yihang Zeng & Fereshte Ghahari & Son T. Le & Marlou R. Slot & Julian Berwanger & Steven R. Blankenship & Kenji Watanabe & Takashi Taniguchi & Franz J. , 2021. "Edge channels of broken-symmetry quantum Hall states in graphene visualized by atomic force microscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Yang Ji & Yunchul Chung & D. Sprinzak & M. Heiblum & D. Mahalu & Hadas Shtrikman, 2003. "An electronic Mach–Zehnder interferometer," Nature, Nature, vol. 422(6930), pages 415-418, March.
    8. B. Keimer & S. A. Kivelson & M. R. Norman & S. Uchida & J. Zaanen, 2015. "From quantum matter to high-temperature superconductivity in copper oxides," Nature, Nature, vol. 518(7538), pages 179-186, February.
    9. J. Nakamura & S. Liang & G. C. Gardner & M. J. Manfra, 2022. "Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. I. Sivan & H. K. Choi & Jinhong Park & A. Rosenblatt & Yuval Gefen & D. Mahalu & V. Umansky, 2016. "Observation of interaction-induced modulations of a quantum Hall liquid’s area," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    11. E. Bocquillon & V. Freulon & J-.M Berroir & P. Degiovanni & B. Plaçais & A. Cavanna & Y. Jin & G. Fève, 2013. "Separation of neutral and charge modes in one-dimensional chiral edge channels," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Yotam Wolf & Amit Aharon-Steinberg & Binghai Yan & Tobias Holder, 2023. "Para-hydrodynamics from weak surface scattering in ultraclean thin flakes," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Changwei Zou & Jaewon Choi & Qizhi Li & Shusen Ye & Chaohui Yin & Mirian Garcia-Fernandez & Stefano Agrestini & Qingzheng Qiu & Xinqiang Cai & Qian Xiao & Xingjiang Zhou & Ke-Jin Zhou & Yayu Wang & Yi, 2024. "Evolution from a charge-ordered insulator to a high-temperature superconductor in Bi2Sr2(Ca,Dy)Cu2O8+δ," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Weilun Jiang & Yuzhi Liu & Avraham Klein & Yuxuan Wang & Kai Sun & Andrey V. Chubukov & Zi Yang Meng, 2022. "Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Yong Hu & Junzhang Ma & Yinxiang Li & Yuxiao Jiang & Dariusz Jakub Gawryluk & Tianchen Hu & Jérémie Teyssier & Volodymyr Multian & Zhouyi Yin & Shuxiang Xu & Soohyeon Shin & Igor Plokhikh & Xinloong H, 2024. "Phonon promoted charge density wave in topological kagome metal ScV6Sn6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. S. Smit & E. Mauri & L. Bawden & F. Heringa & F. Gerritsen & E. Heumen & Y. K. Huang & T. Kondo & T. Takeuchi & N. E. Hussey & M. Allan & T. K. Kim & C. Cacho & A. Krikun & K. Schalm & H.T.C. Stoof & , 2024. "Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. C. C. Tam & M. Zhu & J. Ayres & K. Kummer & F. Yakhou-Harris & J. R. Cooper & A. Carrington & S. M. Hayden, 2022. "Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Ziyuan Chen & Dong Li & Zouyouwei Lu & Yue Liu & Jiakang Zhang & Yuanji Li & Ruotong Yin & Mingzhe Li & Tong Zhang & Xiaoli Dong & Ya-Jun Yan & Dong-Lai Feng, 2023. "Charge order driven by multiple-Q spin fluctuations in heavily electron-doped iron selenide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. J.-J. Wen & W. He & H. Jang & H. Nojiri & S. Matsuzawa & S. Song & M. Chollet & D. Zhu & Y.-J. Liu & M. Fujita & J. M. Jiang & C. R. Rotundu & C.-C. Kao & H.-C. Jiang & J.-S. Lee & Y. S. Lee, 2023. "Enhanced charge density wave with mobile superconducting vortices in La1.885Sr0.115CuO4," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    12. Mads C. Weber & Mael Guennou & Donald M. Evans & Constance Toulouse & Arkadiy Simonov & Yevheniia Kholina & Xiaoxuan Ma & Wei Ren & Shixun Cao & Michael A. Carpenter & Brahim Dkhil & Manfred Fiebig & , 2022. "Emerging spin–phonon coupling through cross-talk of two magnetic sublattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Saizheng Cao & Chenchao Xu & Hiroshi Fukui & Taishun Manjo & Ying Dong & Ming Shi & Yang Liu & Chao Cao & Yu Song, 2023. "Competing charge-density wave instabilities in the kagome metal ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Shinji Kawasaki & Nao Tsukuda & Chengtian Lin & Guo-qing Zheng, 2024. "Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2−xLaxCuO6 superconductor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Shusen Ye & Miao Xu & Hongtao Yan & Zi-Xiang Li & Changwei Zou & Xintong Li & Zhenqi Hao & Chaohui Yin & Yiwen Chen & Xingjiang Zhou & Dung-Hai Lee & Yayu Wang, 2024. "Emergent normal fluid in the superconducting ground state of overdoped cuprates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Stephen J. Thornton & Danilo B. Liarte & Peter Abbamonte & James P. Sethna & Debanjan Chowdhury, 2023. "Jamming and unusual charge density fluctuations of strange metals," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Changjiang Liu & Xianjing Zhou & Deshun Hong & Brandon Fisher & Hong Zheng & John Pearson & Jidong Samuel Jiang & Dafei Jin & Michael R. Norman & Anand Bhattacharya, 2023. "Tunable superconductivity and its origin at KTaO3 interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Xingchen Shen & Rolf Heid & Roland Hott & Amir-Abbas Haghighirad & Björn Salzmann & Marli Reis Cantarino & Claude Monney & Ayman H. Said & Mehdi Frachet & Bridget Murphy & Kai Rossnagel & Stephan Rose, 2023. "Precursor region with full phonon softening above the charge-density-wave phase transition in 2H-TaSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. A. Korshunov & H. Hu & D. Subires & Y. Jiang & D. Călugăru & X. Feng & A. Rajapitamahuni & C. Yi & S. Roychowdhury & M. G. Vergniory & J. Strempfer & C. Shekhar & E. Vescovo & D. Chernyshov & A. H. Sa, 2023. "Softening of a flat phonon mode in the kagome ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. I. Taktak & M. Kapfer & J. Nath & P. Roulleau & M. Acciai & J. Splettstoesser & I. Farrer & D. A. Ritchie & D. C. Glattli, 2022. "Two-particle time-domain interferometry in the fractional quantum Hall effect regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50695-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.