IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50695-1.html
   My bibliography  Save this article

Strongly coupled edge states in a graphene quantum Hall interferometer

Author

Listed:
  • Thomas Werkmeister

    (Harvard University)

  • James R. Ehrets

    (Harvard University)

  • Yuval Ronen

    (Harvard University
    Weizmann Institute of Science)

  • Marie E. Wesson

    (Harvard University)

  • Danial Najafabadi

    (Harvard University)

  • Zezhu Wei

    (Brown University
    Brown University)

  • Kenji Watanabe

    (National Institute for Materials Science, 1-1 Namiki)

  • Takashi Taniguchi

    (National Institute for Materials Science, 1-1 Namiki)

  • D. E. Feldman

    (Brown University
    Brown University)

  • Bertrand I. Halperin

    (Harvard University)

  • Amir Yacoby

    (Harvard University
    Harvard University)

  • Philip Kim

    (Harvard University
    Harvard University)

Abstract

Electronic interferometers using the chiral, one-dimensional (1D) edge channels of the quantum Hall effect (QHE) can demonstrate a wealth of fundamental phenomena. The recent observation of phase jumps in a Fabry-Pérot (FP) interferometer revealed anyonic quasiparticle exchange statistics in the fractional QHE. When multiple integer edge channels are involved, FP interferometers have exhibited anomalous Aharonov-Bohm (AB) interference frequency doubling, suggesting putative pairing of electrons into $${{\boldsymbol{2}}}{{\boldsymbol{e}}}$$ 2 e quasiparticles. Here, we use a highly tunable graphene-based QHE FP interferometer to observe the connection between interference phase jumps and AB frequency doubling, unveiling how strong repulsive interaction between edge channels leads to the apparent pairing phenomena. By tuning electron density in-situ from filling factor $${{\boldsymbol{\nu }}} \, \, {{\boldsymbol{7}}}$$ ν > 7 , we tune the interaction strength and observe periodic interference phase jumps leading to AB frequency doubling. Our observations demonstrate that the combination of repulsive interaction between the spin-split $${{\boldsymbol{\nu }}}={{\boldsymbol{2}}}$$ ν = 2 edge channels and charge quantization is sufficient to explain the frequency doubling, through a near-perfect charge screening between the localized and extended edge channels. Our results show that interferometers are sensitive probes of microscopic interactions and enable future experiments studying correlated electrons in 1D channels using density-tunable graphene.

Suggested Citation

  • Thomas Werkmeister & James R. Ehrets & Yuval Ronen & Marie E. Wesson & Danial Najafabadi & Zezhu Wei & Kenji Watanabe & Takashi Taniguchi & D. E. Feldman & Bertrand I. Halperin & Amir Yacoby & Philip , 2024. "Strongly coupled edge states in a graphene quantum Hall interferometer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50695-1
    DOI: 10.1038/s41467-024-50695-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50695-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50695-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50695-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.