IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50335-8.html
   My bibliography  Save this article

Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer

Author

Listed:
  • Fanpeng Chen

    (Tianjin University)

  • Li Li

    (Tianjin University)

  • Chuanqi Cheng

    (Tianjin University)

  • Yifu Yu

    (Tianjin University)

  • Bo-Hang Zhao

    (Tianjin University
    Tianjin University)

  • Bin Zhang

    (Tianjin University)

Abstract

Electrocatalytic semihydrogenation of acetylene (C2H2) provides a facile and petroleum-independent strategy for ethylene (C2H4) production. However, the reliance on the preseparation and concentration of raw coal-derived C2H2 hinders its economic potential. Here, a concave surface is predicted to be beneficial for enriching C2H2 and optimizing its mass transfer kinetics, thus leading to a high partial pressure of C2H2 around active sites for the direct conversion of raw coal-derived C2H2. Then, a porous concave carbon-supported Cu nanoparticle (Cu-PCC) electrode is designed to enrich the C2H2 gas around the Cu sites. As a result, the as-prepared electrode enables a 91.7% C2H4 Faradaic efficiency and a 56.31% C2H2 single-pass conversion under a simulated raw coal-derived C2H2 atmosphere (~15%) at a partial current density of 0.42 A cm−2, greatly outperforming its counterpart without concave surface supports. The strengthened intermolecular π conjugation caused by the increased C2H2 coverage is revealed to result in the delocalization of π electrons in C2H2, consequently promoting C2H2 activation, suppressing hydrogen evolution competition and enhancing C2H4 selectivity.

Suggested Citation

  • Fanpeng Chen & Li Li & Chuanqi Cheng & Yifu Yu & Bo-Hang Zhao & Bin Zhang, 2024. "Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50335-8
    DOI: 10.1038/s41467-024-50335-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50335-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50335-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50335-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.