IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50115-4.html
   My bibliography  Save this article

Observation of nonlinear thermoelectric effect in MoGe/Y3Fe5O12

Author

Listed:
  • Hiroki Arisawa

    (The University of Tokyo
    RIKEN Center for Emergent Matter Science
    Tohoku University)

  • Yuto Fujimoto

    (The University of Tokyo)

  • Takashi Kikkawa

    (The University of Tokyo)

  • Eiji Saitoh

    (The University of Tokyo
    RIKEN Center for Emergent Matter Science
    The University of Tokyo
    Tohoku University)

Abstract

Thermoelectric effects refer to the voltage generation from temperature gradients in condensed matter. Although various power generators are made from them, all the known effects, such as Seebeck effect, require macroscopic temperature gradients; since the sign of the generated voltage is reversed by reversing the temperature gradient, the net voltage disappears when the temperature distribution fluctuates temporarily or spatially with a macroscopic temperature gradient of zero. It is impossible to utilize such temperature fluctuations in the conventional thermoelectric effects, a situation which limits their application. Here we report the observation of a second-order nonlinear thermoelectric effect; we develop a method to measure nonlinear thermoelectricity and observe that a superconducting MoGe film on Y3Fe5O12 generates a voltage proportional to the square of the applied temperature gradient. The nonlinear thermoelectric generation demonstrated here provides a way for making power generators that produce electric power from temperature fluctuations.

Suggested Citation

  • Hiroki Arisawa & Yuto Fujimoto & Takashi Kikkawa & Eiji Saitoh, 2024. "Observation of nonlinear thermoelectric effect in MoGe/Y3Fe5O12," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50115-4
    DOI: 10.1038/s41467-024-50115-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50115-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50115-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Lustikova & Y. Shiomi & N. Yokoi & N. Kabeya & N. Kimura & K. Ienaga & S. Kaneko & S. Okuma & S. Takahashi & E. Saitoh, 2018. "Vortex rectenna powered by environmental fluctuations," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Shuxu Hu & Jiabin Qiao & Genda Gu & Qi-Kun Xue & Ding Zhang, 2024. "Vortex entropy and superconducting fluctuations in ultrathin underdoped Bi2Sr2CaCu2O8+x superconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50115-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.