IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50035-3.html
   My bibliography  Save this article

Recycling polyolefin plastic waste at short contact times via rapid joule heating

Author

Listed:
  • Esun Selvam

    (University of Delaware, 221 Academy St.
    University of Delaware, 150 Academy St)

  • Kewei Yu

    (University of Delaware, 150 Academy St)

  • Jacqueline Ngu

    (University of Delaware, 221 Academy St.
    University of Delaware, 150 Academy St)

  • Sean Najmi

    (University of Delaware, 150 Academy St
    University of Delaware, 221 Academy St.)

  • Dionisios G. Vlachos

    (University of Delaware, 221 Academy St.
    University of Delaware, 150 Academy St
    University of Delaware, 221 Academy St.)

Abstract

The chemical deconstruction of polyolefins to fuels, lubricants, and waxes offers a promising strategy for mitigating their accumulation in landfills and the environment. Yet, achieving true recyclability of polyolefins into C2-C4 monomers with high yields, low energy demand, and low carbon dioxide emissions under realistic polymer-to-catalyst ratios remains elusive. Here, we demonstrate a single-step electrified approach utilizing Rapid Joule Heating over an H-ZSM-5 catalyst to efficiently deconstruct polyolefin plastic waste into light olefins (C2-C4) in milliseconds, with high productivity at much higher polymer-to-catalyst ratio than prior work. The catalyst is essential in producing a narrow distribution of light olefins. Pulsed operation and steam co-feeding enable highly selective deconstruction (product fraction of >90% towards C2-C4 hydrocarbons) with minimal catalyst deactivation compared to Continuous Joule Heating. This laboratory-scale approach demonstrates effective deconstruction of real-life waste materials, resilience to additives and impurities, and versatility for circular polyolefin plastic waste management.

Suggested Citation

  • Esun Selvam & Kewei Yu & Jacqueline Ngu & Sean Najmi & Dionisios G. Vlachos, 2024. "Recycling polyolefin plastic waste at short contact times via rapid joule heating," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50035-3
    DOI: 10.1038/s41467-024-50035-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50035-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50035-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Dong & Aditya Dilip Lele & Xinpeng Zhao & Shuke Li & Sichao Cheng & Yueqing Wang & Mingjin Cui & Miao Guo & Alexandra H. Brozena & Ying Lin & Tangyuan Li & Lin Xu & Aileen Qi & Ioannis G. Kevrekidi, 2023. "Depolymerization of plastics by means of electrified spatiotemporal heating," Nature, Nature, vol. 616(7957), pages 488-494, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yimin Mao & Peihua Ma & Tangyuan Li & He Liu & Xinpeng Zhao & Shufeng Liu & Xiaoxue Jia & Shaik O. Rahaman & Xizheng Wang & Minhua Zhao & Gang Chen & Hua Xie & Alexandra H. Brozena & Bin Zhou & Yaguan, 2024. "Flash heating process for efficient meat preservation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Wang, Jia & Wen, Mengyuan & La, Xinru & Ren, Jurong & Jiang, Jianchun & Tsang, Daniel C.W., 2024. "Resonance-driven microwave heating for improved methane conversion to hydrogen," Applied Energy, Elsevier, vol. 375(C).
    3. Wei Zeng & Yanfei Zhao & Fengtao Zhang & Rongxiang Li & Minhao Tang & Xiaoqian Chang & Ying Wang & Fengtian Wu & Buxing Han & Zhimin Liu, 2024. "A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yi Cheng & Bing Deng & Phelecia Scotland & Lucas Eddy & Arman Hassan & Bo Wang & Karla J. Silva & Bowen Li & Kevin M. Wyss & Mine G. Ucak-Astarlioglu & Jinhang Chen & Qiming Liu & Tengda Si & Shichen , 2024. "Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Yao Shan & Xuemu Li & Wanjun Zhao & Xiaodan Yang & Yuanyi Wang & Zhuomin Zhang & Shiyuan Liu & Xiaote Xu & Zhengbao Yang, 2024. "Programmable and rapid fabrication of complex-shape ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Qikun Hu & Shuairen Qian & Yuqi Wang & Jiayang Zhao & Meng Jiang & Mingze Sun & Helai Huang & Tao Gan & Jun Ma & Jing Zhang & Yi Cheng & Zhiqiang Niu, 2024. "Polyethylene hydrogenolysis by dilute RuPt alloy to achieve H2-pressure-independent low methane selectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Xiangdong Zhu & Litao Lin & Mingyue Pang & Chao Jia & Longlong Xia & Guosheng Shi & Shicheng Zhang & Yuanda Lu & Liming Sun & Fengbo Yu & Jie Gao & Zhelin He & Xuan Wu & Aodi Li & Liang Wang & Meiling, 2024. "Continuous and low-carbon production of biomass flash graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Hanmin Yang & Ilman Nuran Zaini & Ruming Pan & Yanghao Jin & Yazhe Wang & Lengwan Li & José Juan Bolívar Caballero & Ziyi Shi & Yaprak Subasi & Anissa Nurdiawati & Shule Wang & Yazhou Shen & Tianxiang, 2024. "Distributed electrified heating for efficient hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50035-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.