IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49992-6.html
   My bibliography  Save this article

Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes

Author

Listed:
  • Hangxing Jia

    (Chinese Academy of Sciences)

  • Shengjun Tan

    (Chinese Academy of Sciences)

  • Yingao Cai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yanyan Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jieyu Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yaqiong Zhang

    (Chinese Academy of Sciences)

  • Huijing Ma

    (Chinese Academy of Sciences)

  • Qingzhu Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jinfeng Chen

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Gexia Qiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jue Ruan

    (Chinese Academy of Agricultural Sciences)

  • Yong E. Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.

Suggested Citation

  • Hangxing Jia & Shengjun Tan & Yingao Cai & Yanyan Guo & Jieyu Shen & Yaqiong Zhang & Huijing Ma & Qingzhu Zhang & Jinfeng Chen & Gexia Qiao & Jue Ruan & Yong E. Zhang, 2024. "Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49992-6
    DOI: 10.1038/s41467-024-49992-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49992-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49992-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew A. Lawlor & Weihuan Cao & Christopher E. Ellison, 2021. "A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Mahul Chakraborty & J. J. Emerson & Stuart J. Macdonald & Anthony D. Long, 2019. "Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Qingbo Wang & Emma Pierce-Hoffman & Beryl B. Cummings & Jessica Alföldi & Laurent C. Francioli & Laura D. Gauthier & Andrew J. Hill & Anne H. O’Donnell-Luria & Konrad J. Karczewski & Daniel G. MacArth, 2020. "Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Mitchell R. Vollger & Philip C. Dishuck & William T. Harvey & William S. DeWitt & Xavi Guitart & Michael E. Goldberg & Allison N. Rozanski & Julian Lucas & Mobin Asri & Katherine M. Munson & Alexandra, 2023. "Increased mutation and gene conversion within human segmental duplications," Nature, Nature, vol. 617(7960), pages 325-334, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paris Veltsos & Luis J. Madrigal-Roca & John K. Kelly, 2024. "Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xiaoling Tong & Min-Jin Han & Kunpeng Lu & Shuaishuai Tai & Shubo Liang & Yucheng Liu & Hai Hu & Jianghong Shen & Anxing Long & Chengyu Zhan & Xin Ding & Shuo Liu & Qiang Gao & Bili Zhang & Linli Zhou, 2022. "High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Wenan Chen & Shuoguo Wang & Saima Sultana Tithi & David W. Ellison & Daniel J. Schaid & Gang Wu, 2022. "A rare variant analysis framework using public genotype summary counts to prioritize disease-predisposition genes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Ting Wang & Shiyao Duan & Chen Xu & Yi Wang & Xinzhong Zhang & Xuefeng Xu & Liyang Chen & Zhenhai Han & Ting Wu, 2023. "Pan-genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Cristian Groza & Carl Schwendinger-Schreck & Warren A. Cheung & Emily G. Farrow & Isabelle Thiffault & Juniper Lake & William B. Rizzo & Gilad Evrony & Tom Curran & Guillaume Bourque & Tomi Pastinen, 2024. "Pangenome graphs improve the analysis of structural variants in rare genetic diseases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Naser Ansari-Pour & Yonglan Zheng & Toshio F. Yoshimatsu & Ayodele Sanni & Mustapha Ajani & Jean-Baptiste Reynier & Avraam Tapinos & Jason J. Pitt & Stefan Dentro & Anna Woodard & Padma Sheila Rajagop, 2021. "Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Gabriel E. Rech & Santiago Radío & Sara Guirao-Rico & Laura Aguilera & Vivien Horvath & Llewellyn Green & Hannah Lindstadt & Véronique Jamilloux & Hadi Quesneville & Josefa González, 2022. "Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49992-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.