Liquid-liquid reactions performed by cellular reactors
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-49953-z
Download full text from publisher
References listed on IDEAS
- Lulu Guo & Jie Cheng & Shuo Lian & Qun Liu & Yan Lu & Yuan Zheng & Kongkai Zhu & Minghui Zhang & Yalei Kong & Chao Zhang & Naikang Rong & Yuming Zhuang & Guoxing Fang & Jingjing Jiang & Tianyao Zhang , 2023. "Structural basis of amine odorant perception by a mammal olfactory receptor," Nature, Nature, vol. 618(7963), pages 193-200, June.
- Jun Jie Tan & Jacques P. Guyette & Kenji Miki & Ling Xiao & Gurbani Kaur & Tong Wu & Liye Zhu & Katrina J. Hansen & King-Hwa Ling & David J. Milan & Harald C. Ott, 2021. "Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gregory Zilberg & Alexandra K. Parpounas & Audrey L. Warren & Shifan Yang & Daniel Wacker, 2024. "Molecular basis of human trace amine-associated receptor 1 activation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Anastasiia Gusach & Yang Lee & Armin Nikpour Khoshgrudi & Elizaveta Mukhaleva & Ning Ma & Eline J. Koers & Qingchao Chen & Patricia C. Edwards & Fanglu Huang & Jonathan Kim & Filippo Mancia & Dmitry B, 2024. "Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yu Qian & Zhengxiong Ma & Zhenmei Xu & Yaning Duan & Yangjie Xiong & Ruixue Xia & Xinyan Zhu & Zongwei Zhang & Xinyu Tian & Han Yin & Jian Liu & Jing Song & Yang Lu & Anqi Zhang & Changyou Guo & Lihua, 2024. "Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49953-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.