IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49841-6.html
   My bibliography  Save this article

Topological Fermi-arc surface state covered by floating electrons on a two-dimensional electride

Author

Listed:
  • Chan-young Lim

    (Korea Advanced Institute of Science and Technology
    Donostia International Physics Center (DIPC))

  • Min-Seok Kim

    (Daegu Gyeongbuk Institute of Science and Technology)

  • Dong Cheol Lim

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Sunghun Kim

    (Ajou University)

  • Yeonghoon Lee

    (Korea Research Institute of Standards and Science)

  • Jaehoon Cha

    (Korea Advanced Institute of Science and Technology)

  • Gyubin Lee

    (Korea Advanced Institute of Science and Technology)

  • Sang Yong Song

    (Daegu Gyeongbuk Institute of Science and Technology)

  • Dinesh Thapa

    (North Dakota State University)

  • Jonathan D. Denlinger

    (Lawrence Berkeley National Laboratory)

  • Seong-Gon Kim

    (Mississippi State University)

  • Sung Wng Kim

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Jungpil Seo

    (Daegu Gyeongbuk Institute of Science and Technology)

  • Yeongkwan Kim

    (Korea Advanced Institute of Science and Technology)

Abstract

Two-dimensional electrides can acquire topologically non-trivial phases due to intriguing interplay between the cationic atomic layers and anionic electron layers. However, experimental evidence of topological surface states has yet to be verified. Here, via angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM), we probe the magnetic Weyl states of the ferromagnetic electride [Gd2C]2+·2e−. In particular, the presence of Weyl cones and Fermi-arc states is demonstrated through photon energy-dependent ARPES measurements, agreeing with theoretical band structure calculations. Notably, the STM measurements reveal that the Fermi-arc states exist underneath a floating quantum electron liquid on the top Gd layer, forming double-stacked surface states in a heterostructure. Our work thus not only unveils the non-trivial topology of the [Gd2C]2+·2e− electride but also realizes a surface heterostructure that can host phenomena distinct from the bulk.

Suggested Citation

  • Chan-young Lim & Min-Seok Kim & Dong Cheol Lim & Sunghun Kim & Yeonghoon Lee & Jaehoon Cha & Gyubin Lee & Sang Yong Song & Dinesh Thapa & Jonathan D. Denlinger & Seong-Gon Kim & Sung Wng Kim & Jungpil, 2024. "Topological Fermi-arc surface state covered by floating electrons on a two-dimensional electride," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49841-6
    DOI: 10.1038/s41467-024-49841-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49841-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49841-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung Yong Lee & Jae-Yeol Hwang & Jongho Park & Chandani N. Nandadasa & Younghak Kim & Joonho Bang & Kimoon Lee & Kyu Hyoung Lee & Yunwei Zhang & Yanming Ma & Hideo Hosono & Young Hee Lee & Seong-Gon , 2020. "Ferromagnetic quasi-atomic electrons in two-dimensional electride," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Shawulienu Kezilebieke & Md Nurul Huda & Viliam Vaňo & Markus Aapro & Somesh C. Ganguli & Orlando J. Silveira & Szczepan Głodzik & Adam S. Foster & Teemu Ojanen & Peter Liljeroth, 2020. "Topological superconductivity in a van der Waals heterostructure," Nature, Nature, vol. 588(7838), pages 424-428, December.
    3. N. Xu & H. M. Weng & B. Q. Lv & C. E. Matt & J. Park & F. Bisti & V. N. Strocov & D. Gawryluk & E. Pomjakushina & K. Conder & N. C. Plumb & M. Radovic & G. Autès & O. V. Yazyev & Z. Fang & X. Dai & T., 2016. "Observation of Weyl nodes and Fermi arcs in tantalum phosphide," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    4. C. X. Trang & N. Shimamura & K. Nakayama & S. Souma & K. Sugawara & I. Watanabe & K. Yamauchi & T. Oguchi & K. Segawa & T. Takahashi & Yoichi Ando & T. Sato, 2020. "Conversion of a conventional superconductor into a topological superconductor by topological proximity effect," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Lucas Schneider & Philip Beck & Levente Rózsa & Thore Posske & Jens Wiebe & Roland Wiesendanger, 2023. "Probing the topologically trivial nature of end states in antiferromagnetic atomic chains on superconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Seung Yong Lee & Dong Cheol Lim & Md Salman Khan & Jeong Yun Hwang & Hyung Sub Kim & Kyu Hyung Lee & Sung Wng Kim, 2023. "Magnetic quasi-atomic electrons driven reversible structural and magnetic transitions between electride and its hydrides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Lun-Hui Hu & Rui-Xing Zhang, 2023. "Topological superconducting vortex from trivial electronic bands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Le Duc Anh & Keita Ishihara & Tomoki Hotta & Kohdai Inagaki & Hideki Maki & Takahiro Saeki & Masaki Kobayashi & Masaaki Tanaka, 2024. "Large superconducting diode effect in ion-beam patterned Sn-based superconductor nanowire/topological Dirac semimetal planar heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. A. Mesaros & G. D. Gu & F. Massee, 2024. "Topologically trivial gap-filling in superconducting Fe(Se,Te) by one-dimensional defects," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    11. Maciej Bazarnik & Roberto Lo Conte & Eric Mascot & Kirsten Bergmann & Dirk K. Morr & Roland Wiesendanger, 2023. "Antiferromagnetism-driven two-dimensional topological nodal-point superconductivity," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Xiaohan Wang & Hao Wang & Liang Ma & Labao Zhang & Zhuolin Yang & Daxing Dong & Xi Chen & Haochen Li & Yanqiu Guan & Biao Zhang & Qi Chen & Lili Shi & Hui Li & Zhi Qin & Xuecou Tu & Lijian Zhang & Xia, 2023. "Topotactic fabrication of transition metal dichalcogenide superconducting nanocircuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49841-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.