IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49761-5.html
   My bibliography  Save this article

Structure of an RNA G-quadruplex from the West Nile virus genome

Author

Listed:
  • J. Ross Terrell

    (Georgia State University)

  • Thao T. Le

    (Georgia State University)

  • Ananya Paul

    (Georgia State University)

  • Margo A. Brinton

    (Georgia State University)

  • W. David Wilson

    (Georgia State University)

  • Gregory M. K. Poon

    (Georgia State University)

  • Markus W. Germann

    (Georgia State University
    Georgia State University)

  • Jessica L. Siemer

    (Georgia State University)

Abstract

Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.

Suggested Citation

  • J. Ross Terrell & Thao T. Le & Ananya Paul & Margo A. Brinton & W. David Wilson & Gregory M. K. Poon & Markus W. Germann & Jessica L. Siemer, 2024. "Structure of an RNA G-quadruplex from the West Nile virus genome," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49761-5
    DOI: 10.1038/s41467-024-49761-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49761-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49761-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivia Goethals & Suzanne J. F. Kaptein & Bart Kesteleyn & Jean-François Bonfanti & Liesbeth Wesenbeeck & Dorothée Bardiot & Ernst J. Verschoor & Babs E. Verstrepen & Zahra Fagrouch & J. Robert Putnak, 2023. "Blocking NS3–NS4B interaction inhibits dengue virus in non-human primates," Nature, Nature, vol. 615(7953), pages 678-686, March.
    2. Eunhye Lee & Paul J. Bujalowski & Tadahisa Teramoto & Keerthi Gottipati & Seth D. Scott & Radhakrishnan Padmanabhan & Kyung H. Choi, 2021. "Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Hsin Li & Winston Chiu & Yun-An Huang & Madina Rasulova & Thomas Vercruysse & Hendrik Jan Thibaut & Sebastiaan ter Horst & Joana Rocha-Pereira & Greet Vanhoof & Doortje Borrenberghs & Olivia Goetha, 2024. "Multiplexed multicolor antiviral assay amenable for high-throughput research," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Jerricho Tipo & Keerthi Gottipati & Michael Slaton & Giovanni Gonzalez-Gutierrez & Kyung H. Choi, 2024. "Structure of HIV-1 RRE stem-loop II identifies two conformational states of the high-affinity Rev binding site," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49761-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.