IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49672-5.html
   My bibliography  Save this article

Enhancing sorption kinetics by oriented and single crystalline array-structured ZSM-5 film on monoliths

Author

Listed:
  • Junfei Weng

    (University of Connecticut)

  • Chunxiang Zhu

    (University of Connecticut)

  • Binchao Zhao

    (University of Connecticut)

  • Wenxiang Tang

    (University of Connecticut)

  • Xingxu Lu

    (University of Connecticut)

  • Fangyuan Liu

    (University of Connecticut)

  • Mudi Wu

    (University of Connecticut)

  • Yong Ding

    (Georgia Institute of Technology)

  • Pu-Xian Gao

    (University of Connecticut)

Abstract

To enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures. Further integrating the ZSM-5 array with Co3O4 nanoarray enables comprehensive propene removal throughout a wider temperature range. The array structured film design could offer energy-efficient solutions to overcome both sorption and reaction kinetic restrictions in various solid porous materials for various energy and chemical transformation applications.

Suggested Citation

  • Junfei Weng & Chunxiang Zhu & Binchao Zhao & Wenxiang Tang & Xingxu Lu & Fangyuan Liu & Mudi Wu & Yong Ding & Pu-Xian Gao, 2024. "Enhancing sorption kinetics by oriented and single crystalline array-structured ZSM-5 film on monoliths," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49672-5
    DOI: 10.1038/s41467-024-49672-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49672-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49672-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Son Hoang & Yanbing Guo & Andrew J. Binder & Wenxiang Tang & Sibo Wang & Jingyue (Jimmy) Liu & Huan Tran & Xingxu Lu & Yu Wang & Yong Ding & Eleni A. Kyriakidou & Ji Yang & Todd J. Toops & Thomas R. P, 2020. "Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Minkee Choi & Kyungsu Na & Jeongnam Kim & Yasuhiro Sakamoto & Osamu Terasaki & Ryong Ryoo, 2009. "Erratum: Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts," Nature, Nature, vol. 461(7265), pages 828-828, October.
    3. Chuanfu Wang & Lei Zhang & Xin Huang & Yufei Zhu & Gang (Kevin) Li & Qinfen Gu & Jingyun Chen & Linge Ma & Xiujie Li & Qihua He & Junbo Xu & Qi Sun & Chuqiao Song & Mi Peng & Junliang Sun & Ding Ma, 2019. "Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Minkee Choi & Kyungsu Na & Jeongnam Kim & Yasuhiro Sakamoto & Osamu Terasaki & Ryong Ryoo, 2009. "Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts," Nature, Nature, vol. 461(7261), pages 246-249, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
    2. Hyun Su Kim & Su Kyung Kang & Haoxiang Zhang & Elsa Tsegay Tikue & Jin Hyung Lee & Pyung Soo Lee, 2021. "Al-ZSM-5 Nanocrystal Catalysts Grown from Silicalite-1 Seeds for Methane Conversion," Energies, MDPI, vol. 14(2), pages 1-11, January.
    3. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xuemei Wu & Chengwei Wang & Shengying Zhao & Yang Wang & Tao Zhang & Jie Yao & Weizhe Gao & Baizhang Zhang & Taiki Arakawa & Yingluo He & Fei Chen & Minghui Tan & Guohui Yang & Noritatsu Tsubaki, 2024. "Dual-engine-driven realizing high-yield synthesis of Para-Xylene directly from CO2-containing syngas," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Lin, Feng & Ma, Yulong & Sun, Yonggang & Song, Zhi & Men, Xiuqin & Wu, Yuhua & Zhu, Yingbo & Gao, Tingting & Zhong, Yudan, 2022. "Selective hydrodeoxygenation of lignin model compound to renewable fuel precursors using two-dimensional nanosheet Ni/HZ5-NS catalyst," Renewable Energy, Elsevier, vol. 189(C), pages 1278-1291.
    6. Huiqiu Wang & Boyuan Shen & Xiao Chen & Hao Xiong & Hongmei Wang & Wenlong Song & Chaojie Cui & Fei Wei & Weizhong Qian, 2022. "Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Sai Zhang & Yuxuan Liu & Mingkai Zhang & Yuanyuan Ma & Jun Hu & Yongquan Qu, 2022. "Sustainable production of hydrogen with high purity from methanol and water at low temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49672-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.