IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49667-2.html
   My bibliography  Save this article

Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma

Author

Listed:
  • Le Yu

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

  • Yu Deng

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

  • Xiaodong Wang

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

  • Charlene Santos

    (The University of North Carolina at Chapel Hill)

  • Ian J. Davis

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

  • H. Shelton Earp

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

  • Pengda Liu

    (The University of North Carolina at Chapel Hill
    The University of North Carolina at Chapel Hill)

Abstract

Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.

Suggested Citation

  • Le Yu & Yu Deng & Xiaodong Wang & Charlene Santos & Ian J. Davis & H. Shelton Earp & Pengda Liu, 2024. "Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49667-2
    DOI: 10.1038/s41467-024-49667-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49667-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49667-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Afnan Abu-Thuraia & Marie-Anne Goyette & Jonathan Boulais & Carine Delliaux & Chloé Apcher & Céline Schott & Rony Chidiac & Halil Bagci & Marie-Pier Thibault & Dominique Davidson & Mathieu Ferron & An, 2020. "AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    2. Yao Jiang & Yanqiong Zhang & Janet Y. Leung & Cheng Fan & Konstantin I. Popov & Siyuan Su & Jiayi Qian & Xiaodong Wang & Alisha Holtzhausen & Eric Ubil & Yang Xiang & Ian Davis & Nikolay V. Dokholyan , 2019. "MERTK mediated novel site Akt phosphorylation alleviates SAV1 suppression," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Aparna Gorthi & July Carolina Romero & Eva Loranc & Lin Cao & Liesl A. Lawrence & Elicia Goodale & Amanda Balboni Iniguez & Xavier Bernard & V. Pragathi Masamsetti & Sydney Roston & Elizabeth R. Lawlo, 2018. "EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma," Nature, Nature, vol. 555(7696), pages 387-391, March.
    4. Pengda Liu & Michael Begley & Wojciech Michowski & Hiroyuki Inuzuka & Miriam Ginzberg & Daming Gao & Peiling Tsou & Wenjian Gan & Antonella Papa & Byeong Mo Kim & Lixin Wan & Amrik Singh & Bo Zhai & M, 2014. "Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus," Nature, Nature, vol. 508(7497), pages 541-545, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Aleix Bayona-Feliu & Emilia Herrera-Moyano & Nibal Badra-Fajardo & Iván Galván-Femenía & María Eugenia Soler-Oliva & Andrés Aguilera, 2023. "The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Josefine Radke & Elisa Schumann & Julia Onken & Randi Koll & Güliz Acker & Bohdan Bodnar & Carolin Senger & Sascha Tierling & Markus Möbs & Peter Vajkoczy & Anna Vidal & Sandra Högler & Petra Kodajova, 2022. "Decoding molecular programs in melanoma brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    4. Michael J. Roy & Minglyanna G. Surudoi & Ashleigh Kropp & Jianmei Hou & Weiwen Dai & Joshua M. Hardy & Lung-Yu Liang & Thomas R. Cotton & Bernhard C. Lechtenberg & Toby A. Dite & Xiuquan Ma & Roger J., 2023. "Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Guillaume Serwe & David Kachaner & Jessica Gagnon & Cédric Plutoni & Driss Lajoie & Eloïse Duramé & Malha Sahmi & Damien Garrido & Martin Lefrançois & Geneviève Arseneault & Marc K. Saba-El-Leil & Syl, 2023. "CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49667-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.