IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49603-4.html
   My bibliography  Save this article

Guiding antibiotics towards their target using bacteriophage proteins

Author

Listed:
  • Xinghong Zhao

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Xinyi Zhong

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Shinong Yang

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Jiarong Deng

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Kai Deng

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Zhengqun Huang

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Yuanfeng Li

    (The First Affiliated Hospital of Wenzhou Medical University)

  • Zhongqiong Yin

    (Sichuan Agricultural University)

  • Yong Liu

    (University of Chinese Academy of Sciences)

  • Jakob H. Viel

    (University of Groningen)

  • Hongping Wan

    (Sichuan Agricultural University
    Sichuan Agricultural University)

Abstract

Novel therapeutic strategies against difficult-to-treat bacterial infections are desperately needed, and the faster and cheaper way to get them might be by repurposing existing antibiotics. Nanodelivery systems enhance the efficacy of antibiotics by guiding them to their targets, increasing the local concentration at the site of infection. While recently described nanodelivery systems are promising, they are generally not easy to adapt to different targets, and lack biocompatibility or specificity. Here, nanodelivery systems are created that source their targeting proteins from bacteriophages. Bacteriophage receptor-binding proteins and cell-wall binding domains are conjugated to nanoparticles, for the targeted delivery of rifampicin, imipenem, and ampicillin against bacterial pathogens. They show excellent specificity against their targets, and accumulate at the site of infection to deliver their antibiotic payload. Moreover, the nanodelivery systems suppress pathogen infections more effectively than 16 to 32-fold higher doses of free antibiotics. This study demonstrates that bacteriophage sourced targeting proteins are promising candidates to guide nanodelivery systems. Their specificity, availability, and biocompatibility make them great options to guide the antibiotic nanodelivery systems that are desperately needed to combat difficult-to-treat infections.

Suggested Citation

  • Xinghong Zhao & Xinyi Zhong & Shinong Yang & Jiarong Deng & Kai Deng & Zhengqun Huang & Yuanfeng Li & Zhongqiong Yin & Yong Liu & Jakob H. Viel & Hongping Wan, 2024. "Guiding antibiotics towards their target using bacteriophage proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49603-4
    DOI: 10.1038/s41467-024-49603-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49603-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49603-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sophie M. Lehar & Thomas Pillow & Min Xu & Leanna Staben & Kimberly K. Kajihara & Richard Vandlen & Laura DePalatis & Helga Raab & Wouter L. Hazenbos & J. Hiroshi Morisaki & Janice Kim & Summer Park &, 2015. "Novel antibody–antibiotic conjugate eliminates intracellular S. aureus," Nature, Nature, vol. 527(7578), pages 323-328, November.
    2. Losee L. Ling & Tanja Schneider & Aaron J. Peoples & Amy L. Spoering & Ina Engels & Brian P. Conlon & Anna Mueller & Till F. Schäberle & Dallas E. Hughes & Slava Epstein & Michael Jones & Linos Lazari, 2015. "A new antibiotic kills pathogens without detectable resistance," Nature, Nature, vol. 517(7535), pages 455-459, January.
    3. Yong-Xin Li & Zheng Zhong & Wei-Peng Zhang & Pei-Yuan Qian, 2018. "Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Benjamin Plackett, 2020. "Why big pharma has abandoned antibiotics," Nature, Nature, vol. 586(7830), pages 50-52, October.
    5. Losee L. Ling & Tanja Schneider & Aaron J. Peoples & Amy L. Spoering & Ina Engels & Brian P. Conlon & Anna Mueller & Till F. Schäberle & Dallas E. Hughes & Slava Epstein & Michael Jones & Linos Lazari, 2015. "Erratum: A new antibiotic kills pathogens without detectable resistance," Nature, Nature, vol. 520(7547), pages 388-388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kalinga Pavan T. Silva & Ganesh Sundar & Anupama Khare, 2023. "Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nicole M. Revie & Kali R. Iyer & Michelle E. Maxson & Jiabao Zhang & Su Yan & Caroline M. Fernandes & Kirsten J. Meyer & Xuefei Chen & Iwona Skulska & Meea Fogal & Hiram Sanchez & Saif Hossain & Sheen, 2022. "Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Bin Ma & Caiyu Lu & Yiling Wang & Jingwen Yu & Kankan Zhao & Ran Xue & Hao Ren & Xiaofei Lv & Ronghui Pan & Jiabao Zhang & Yongguan Zhu & Jianming Xu, 2023. "A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Hiroshi Hamamoto & Suresh Panthee & Atmika Paudel & Kenichi Ishii & Jyunichiro Yasukawa & Jie Su & Atsushi Miyashita & Hiroaki Itoh & Kotaro Tokumoto & Masayuki Inoue & Kazuhisa Sekimizu, 2021. "Serum apolipoprotein A-I potentiates the therapeutic efficacy of lysocin E against Staphylococcus aureus," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Christopher Jonkergouw & Ngong Kodiah Beyeh & Ekaterina Osmekhina & Katarzyna Leskinen & S. Maryamdokht Taimoory & Dmitrii Fedorov & Eduardo Anaya-Plaza & Mauri A. Kostiainen & John F. Trant & Robin H, 2023. "Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Josh L Espinoza & Chris L Dupont & Aubrie O’Rourke & Sinem Beyhan & Pavel Morales & Amy Spoering & Kirsten J Meyer & Agnes P Chan & Yongwook Choi & William C Nierman & Kim Lewis & Karen E Nelson, 2021. "Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
    8. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    9. Ines Rodrigues Lopes & Laura Maria Alcantara & Ricardo Jorge Silva & Jerome Josse & Elena Pedrero Vega & Ana Marina Cabrerizo & Melanie Bonhomme & Daniel Lopez & Frederic Laurent & Francois Vandenesch, 2022. "Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Heyen, Nils B. & Zenker, Andrea & Aichinger, Heike & Bratan, Tanja & Kaufmann, Tanja & Schnabl, Esther, 2024. "Innovation without growth? Exploring the (in)dependency of innovation on economic growth," Discussion Papers "Innovation Systems and Policy Analysis" 83, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Brassel, Simon & Al Taie, Amer & Steuten, Lotte, 2023. "Value assessment of antimicrobials using the STEDI framework – How steady is the outcome?," Health Policy, Elsevier, vol. 136(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49603-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.