IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49511-7.html
   My bibliography  Save this article

Solar overall water-splitting by a spin-hybrid all-organic semiconductor

Author

Listed:
  • Xinyu Lin

    (Jiangsu University)

  • Yue Hao

    (Jiangsu University)

  • Yanjun Gong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Zhou

    (University of Michigan)

  • Dongge Ma

    (College of Chemistry and Materials Engineering, Beijing Technology and Business University)

  • Zhonghuan Liu

    (Jiangsu University)

  • Yuming Sun

    (Jiangsu University)

  • Hongyang Sun

    (Jiangsu University)

  • Yahui Chen

    (Jiangsu University)

  • Shuhan Jia

    (Jiangsu University)

  • Wanhe Li

    (Jiangsu University)

  • Chengqi Guo

    (Jiangsu University)

  • Yiying Zhou

    (Jiangsu University)

  • Pengwei Huo

    (Jiangsu University)

  • Yan Yan

    (Jiangsu University)

  • Wanhong Ma

    (Chinese Academy of Sciences)

  • Shouqi Yuan

    (Jiangsu University)

  • Jincai Zhao

    (Chinese Academy of Sciences)

Abstract

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

Suggested Citation

  • Xinyu Lin & Yue Hao & Yanjun Gong & Peng Zhou & Dongge Ma & Zhonghuan Liu & Yuming Sun & Hongyang Sun & Yahui Chen & Shuhan Jia & Wanhe Li & Chengqi Guo & Yiying Zhou & Pengwei Huo & Yan Yan & Wanhong, 2024. "Solar overall water-splitting by a spin-hybrid all-organic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49511-7
    DOI: 10.1038/s41467-024-49511-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49511-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49511-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanyang Han & Renren Deng & Qifei Gu & Limeng Ni & Uyen Huynh & Jiangbin Zhang & Zhigao Yi & Baodan Zhao & Hiroyuki Tamura & Anton Pershin & Hui Xu & Zhiyuan Huang & Shahab Ahmad & Mojtaba Abdi-Jalebi, 2020. "Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright," Nature, Nature, vol. 587(7835), pages 594-599, November.
    2. Yan Guo & Qixin Zhou & Jun Nan & Wenxin Shi & Fuyi Cui & Yongfa Zhu, 2022. "Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Caijin Huang & Cheng Chen & Mingwen Zhang & Lihua Lin & Xinxin Ye & Sen Lin & Markus Antonietti & Xinchen Wang, 2015. "Carbon-doped BN nanosheets for metal-free photoredox catalysis," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Jiang & Liangrui He & Zhiwen Yang & Huibin Qiu & Xiaoyuan Chen & Xujiang Yu & Wanwan Li, 2023. "Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hojamberdiev, Mirabbos & Khan, Mohammad Mansoob & Kadirova, Zukhra & Kawashima, Kenta & Yubuta, Kunio & Teshima, Katsuya & Riedel, Ralf & Hasegawa, Masashi, 2019. "Synergistic effect of g-C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation," Renewable Energy, Elsevier, vol. 138(C), pages 434-444.
    3. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Han, Ning & Wang, Shuo & Rana, Ashvinder K. & Asif, Saira & Klemeš, Jiří Jaromír & Bokhari, Awais & Long, Jinlin & Thakur, Vijay Kumar & Zhao, Xiaolin, 2022. "Rational design of boron nitride with different dimensionalities for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49511-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.