IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49342-6.html
   My bibliography  Save this article

PR-SET7 epigenetically restrains uterine interferon response and cell death governing proper postnatal stromal development

Author

Listed:
  • Haili Bao

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Yang Sun

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Na Deng

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Leilei Zhang

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Yuanyuan Jia

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Gaizhen Li

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Yun Gao

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Xinyi Li

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Yedong Tang

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Han Cai

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Jinhua Lu

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Haibin Wang

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen
    Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen)

  • Wenbo Deng

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

  • Shuangbo Kong

    (The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen)

Abstract

The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.

Suggested Citation

  • Haili Bao & Yang Sun & Na Deng & Leilei Zhang & Yuanyuan Jia & Gaizhen Li & Yun Gao & Xinyi Li & Yedong Tang & Han Cai & Jinhua Lu & Haibin Wang & Wenbo Deng & Shuangbo Kong, 2024. "PR-SET7 epigenetically restrains uterine interferon response and cell death governing proper postnatal stromal development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49342-6
    DOI: 10.1038/s41467-024-49342-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49342-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49342-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengying Liu & Wenbo Deng & Lu Tang & Meng Liu & Haili Bao & Chuanhui Guo & Changxian Zhang & Jinhua Lu & Haibin Wang & Zhongxian Lu & Shuangbo Kong, 2022. "Menin directs regionalized decidual transformation through epigenetically setting PTX3 to balance FGF and BMP signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Ruicong Wang & Hongda Li & Jianfeng Wu & Zhi-Yu Cai & Baizhou Li & Hengxiao Ni & Xingfeng Qiu & Hui Chen & Wei Liu & Zhang-Hua Yang & Min Liu & Jin Hu & Yaoji Liang & Ping Lan & Jiahuai Han & Wei Mo, 2020. "Gut stem cell necroptosis by genome instability triggers bowel inflammation," Nature, Nature, vol. 580(7803), pages 386-390, April.
    3. Muhammad Shoaib & Qinming Chen & Xiangyan Shi & Nidhi Nair & Chinmayi Prasanna & Renliang Yang & David Walter & Klaus S. Frederiksen & Hjorleifur Einarsson & J. Peter Svensson & Chuan Fa Liu & Karl Ek, 2021. "Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. SangJoon Lee & Rajendra Karki & Yaqiu Wang & Lam Nhat Nguyen & Ravi C. Kalathur & Thirumala-Devi Kanneganti, 2021. "AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence," Nature, Nature, vol. 597(7876), pages 415-419, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunkun Zhang & Shaoxuan Chen & Qihua Yang & Shuanghui Guo & Qiang Chen & Zhixiong Liu & Li Li & Mengyun Jiang & Hongda Li & Jin Hu & Xu Pan & Wenbo Deng & Naian Xiao & Bo Wang & Zhan-xiang Wang & Lian, 2022. "The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xingxing Ren & Qiuyuan Liu & Peirong Zhou & Tingyue Zhou & Decai Wang & Qiao Mei & Richard A. Flavell & Zhanju Liu & Mingsong Li & Wen Pan & Shu Zhu, 2024. "DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Meenakshi Sharma & Eva Alba, 2023. "Assembly mechanism of the inflammasome sensor AIM2 revealed by single molecule analysis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Rajashree A. Deshpande & Alberto Marin-Gonzalez & Hannah K. Barnes & Phillip R. Woolley & Taekjip Ha & Tanya T. Paull, 2023. "Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Jorge Mata-Garrido & Yao Xiang & Yunhua Chang-Marchand & Caroline Reisacher & Elisabeth Ageron & Ida Chiara Guerrera & Iñigo Casafont & Aurelia Bruneau & Claire Cherbuy & Xavier Treton & Anne Dumay & , 2022. "The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Li Weng & Wen-Shuai Tang & Xu Wang & Yingyun Gong & Changqin Liu & Ni-Na Hong & Ying Tao & Kuang-Zheng Li & Shu-Ning Liu & Wanzi Jiang & Ying Li & Ke Yao & Li Chen & He Huang & Yu-Zheng Zhao & Ze-Ping, 2024. "Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Ting Zhang & Carsten Künne & Dong Ding & Stefan Günther & Xinyue Guo & Yonggang Zhou & Xuejun Yuan & Thomas Braun, 2022. "Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Yan Jiang & Siqi Sun & Yuan Quan & Xin Wang & Yuling You & Xiao Zhang & Yue Zhang & Yin Liu & Bingjing Wang & Henan Xu & Xuetao Cao, 2023. "Nuclear RPSA senses viral nucleic acids to promote the innate inflammatory response," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Seung Chel Yang & Mira Park & Kwon-Ho Hong & Hyeonwoo La & Chanhyeok Park & Peike Wang & Gaizhen Li & Qionghua Chen & Youngsok Choi & Francesco J. DeMayo & John P. Lydon & David G. Skalnik & Hyunjung , 2023. "CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49342-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.