IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49301-1.html
   My bibliography  Save this article

LDL receptor in alphavirus entry: structural analysis and implications for antiviral therapy

Author

Listed:
  • Ningning Wang

    (Nanjing Agricultural University)

  • Andres Merits

    (University of Tartu)

  • Michael Veit

    (Free University Berlin)

  • Laura Sandra Lello

    (University of Tartu)

  • Shuhan Kong

    (Nanjing Agricultural University)

  • Houqi Jiao

    (Nanjing Agricultural University)

  • Jie Chen

    (Nanjing Agricultural University)

  • Yu Wang

    (Nanjing Agricultural University)

  • Georgi Dobrikov

    (Bulgarian Academy of Sciences)

  • Félix A. Rey

    (CNRS UMR 3569, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15)

  • Shuo Su

    (Nanjing Agricultural University
    Nanjing Agricultural University)

Abstract

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.

Suggested Citation

  • Ningning Wang & Andres Merits & Michael Veit & Laura Sandra Lello & Shuhan Kong & Houqi Jiao & Jie Chen & Yu Wang & Georgi Dobrikov & Félix A. Rey & Shuo Su, 2024. "LDL receptor in alphavirus entry: structural analysis and implications for antiviral therapy," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49301-1
    DOI: 10.1038/s41467-024-49301-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49301-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49301-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katherine Basore & Hongming Ma & Natasha M. Kafai & Samantha Mackin & Arthur S. Kim & Christopher A. Nelson & Michael S. Diamond & Daved H. Fremont, 2021. "Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor," Nature, Nature, vol. 598(7882), pages 672-676, October.
    2. Hongming Ma & Arthur S. Kim & Natasha M. Kafai & James T. Earnest & Aadit P. Shah & James Brett Case & Katherine Basore & Theron C. Gilliland & Chengqun Sun & Christopher A. Nelson & Larissa B. Thackr, 2020. "LDLRAD3 is a receptor for Venezuelan equine encephalitis virus," Nature, Nature, vol. 588(7837), pages 308-314, December.
    3. James E. Voss & Marie-Christine Vaney & Stéphane Duquerroy & Clemens Vonrhein & Christine Girard-Blanc & Elodie Crublet & Andrew Thompson & Gérard Bricogne & Félix A. Rey, 2010. "Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography," Nature, Nature, vol. 468(7324), pages 709-712, December.
    4. Xiaofeng Zhai & Xiaoling Li & Michael Veit & Ningning Wang & Yu Wang & Andres Merits & Zhiwen Jiang & Yan Qin & Xiaoguang Zhang & Kaili Qi & Houqi Jiao & Wan-Ting He & Ye Chen & Yang Mao & Shuo Su, 2024. "LDLR is used as a cell entry receptor by multiple alphaviruses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Laurent Meertens & Mohamed Lamine Hafirassou & Thérèse Couderc & Lucie Bonnet-Madin & Vasiliya Kril & Beate M. Kümmerer & Athena Labeau & Alexis Brugier & Etienne Simon-Loriere & Julien Burlaud-Gailla, 2019. "FHL1 is a major host factor for chikungunya virus infection," Nature, Nature, vol. 574(7777), pages 259-263, October.
    6. Rong Zhang & Arthur S. Kim & Julie M. Fox & Sharmila Nair & Katherine Basore & William B. Klimstra & Rebecca Rimkunas & Rachel H. Fong & Hueylie Lin & Subhajit Poddar & James E. Crowe & Benjamin J. Do, 2018. "Mxra8 is a receptor for multiple arthritogenic alphaviruses," Nature, Nature, vol. 557(7706), pages 570-574, May.
    7. Hongming Ma & Lucas J. Adams & Saravanan Raju & Alan Sariol & Natasha M. Kafai & Hana Janova & William B. Klimstra & Daved H. Fremont & Michael S. Diamond, 2024. "The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Bingting Ma & Cuiqing Huang & Jun Ma & Ye Xiang & Xinzheng Zhang, 2021. "Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3," Nature, Nature, vol. 598(7882), pages 677-681, October.
    9. Lars E. Clark & Sarah A. Clark & ChieYu Lin & Jianying Liu & Adrian Coscia & Katherine G. Nabel & Pan Yang & Dylan V. Neel & Hyo Lee & Vesna Brusic & Iryna Stryapunina & Kenneth S. Plante & Asim A. Ah, 2022. "VLDLR and ApoER2 are receptors for multiple alphaviruses," Nature, Nature, vol. 602(7897), pages 475-480, February.
    10. Helder V. Ribeiro-Filho & Lais D. Coimbra & Alexandre Cassago & Rebeca P. F. Rocha & João Victor da Silva Guerra & Rafael Felicio & Carolina Moretto Carnieli & Luiza Leme & Antonio Cláudio Padilha & A, 2021. "Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Zhai & Xiaoling Li & Michael Veit & Ningning Wang & Yu Wang & Andres Merits & Zhiwen Jiang & Yan Qin & Xiaoguang Zhang & Kaili Qi & Houqi Jiao & Wan-Ting He & Ye Chen & Yang Mao & Shuo Su, 2024. "LDLR is used as a cell entry receptor by multiple alphaviruses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Hongming Ma & Lucas J. Adams & Saravanan Raju & Alan Sariol & Natasha M. Kafai & Hana Janova & William B. Klimstra & Daved H. Fremont & Michael S. Diamond, 2024. "The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Wern Hann Ng & Xiang Liu & Zheng L. Ling & Camilla N. O. Santos & Lucas S. Magalhães & Andrew J. Kueh & Marco J. Herold & Adam Taylor & Joseph R. Freitas & Sandra Koit & Sainan Wang & Andrew R. Lloyd , 2023. "FHL1 promotes chikungunya and o’nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Wenjie Qiao & Christopher M. Richards & Youlim Kim & James R. Zengel & Siyuan Ding & Harry B. Greenberg & Jan E. Carette, 2024. "MYADM binds human parechovirus 1 and is essential for viral entry," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Marie-Christine Vaney & Mariano Dellarole & Stéphane Duquerroy & Iris Medits & Georgios Tsouchnikas & Alexander Rouvinski & Patrick England & Karin Stiasny & Franz X. Heinz & Félix A. Rey, 2022. "Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Vidya Mangala Prasad & Jelle S. Blijleven & Jolanda M. Smit & Kelly K. Lee, 2022. "Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Samantha Hover & Frank W. Charlton & Jan Hellert & Jessica J. Swanson & Jamel Mankouri & John N. Barr & Juan Fontana, 2023. "Organisation of the orthobunyavirus tripodal spike and the structural changes induced by low pH and K+ during entry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Maureen Ritter & Lola Canus & Anupriya Gautam & Thomas Vallet & Li Zhong & Alexandre Lalande & Bertrand Boson & Apoorv Gandhi & Sergueï Bodoirat & Julien Burlaud-Gaillard & Natalia Freitas & Philippe , 2024. "The low-density lipoprotein receptor and apolipoprotein E associated with CCHFV particles mediate CCHFV entry into cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49301-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.