IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49292-z.html
   My bibliography  Save this article

Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident

Author

Listed:
  • Lindsay M. Morton

    (National Institutes of Health)

  • Olivia W. Lee

    (National Institutes of Health)

  • Danielle M. Karyadi

    (National Institutes of Health)

  • Tetiana I. Bogdanova

    (V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine)

  • Chip Stewart

    (Broad Institute of MIT and Harvard)

  • Stephen W. Hartley

    (National Institutes of Health)

  • Charles E. Breeze

    (National Institutes of Health)

  • Sara J. Schonfeld

    (National Institutes of Health)

  • Elizabeth K. Cahoon

    (National Institutes of Health)

  • Vladimir Drozdovitch

    (National Institutes of Health)

  • Sergii Masiuk

    (National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine)

  • Mykola Chepurny

    (National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine)

  • Liudmyla Yu Zurnadzhy

    (V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine)

  • Jieqiong Dai

    (Frederick National Laboratory for Cancer Research)

  • Marko Krznaric

    (Charing Cross Hospital)

  • Meredith Yeager

    (Frederick National Laboratory for Cancer Research)

  • Amy Hutchinson

    (Frederick National Laboratory for Cancer Research)

  • Belynda D. Hicks

    (Frederick National Laboratory for Cancer Research)

  • Casey L. Dagnall

    (Frederick National Laboratory for Cancer Research)

  • Mia K. Steinberg

    (Frederick National Laboratory for Cancer Research)

  • Kristine Jones

    (Frederick National Laboratory for Cancer Research)

  • Komal Jain

    (Frederick National Laboratory for Cancer Research)

  • Ben Jordan

    (Frederick National Laboratory for Cancer Research)

  • Mitchell J. Machiela

    (National Institutes of Health)

  • Eric T. Dawson

    (National Institutes of Health
    Nvidia Corporation)

  • Vibha Vij

    (National Institutes of Health)

  • Julie M. Gastier-Foster

    (Biospecimen Core Resource
    Ohio State University College of Medicine)

  • Jay Bowen

    (Biospecimen Core Resource)

  • Kiyohiko Mabuchi

    (National Institutes of Health)

  • Maureen Hatch

    (National Institutes of Health)

  • Amy Berrington de Gonzalez

    (National Institutes of Health)

  • Gad Getz

    (Broad Institute of MIT and Harvard
    Massachusetts General Hospital
    Harvard Medical School)

  • Mykola D. Tronko

    (V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine)

  • Gerry A. Thomas

    (Charing Cross Hospital)

  • Stephen J. Chanock

    (National Institutes of Health)

Abstract

Childhood radioactive iodine exposure from the Chornobyl accident increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic process and potential radiation association are poorly understood. Here, we analyze cLNM occurrence among 428 PTC with genomic landscape analyses and known drivers (131I-exposed = 349, unexposed = 79; mean age = 27.9 years). We show that cLNM are more frequent in PTC with fusion (55%) versus mutation (30%) drivers, although the proportion varies by specific driver gene (RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency is not associated with other characteristics, including radiation dose. cLNM molecular profiling (N = 47) demonstrates 100% driver concordance with matched primary PTCs and highly concordant mutational spectra. Transcriptome analysis reveals 17 differentially expressed genes, particularly in the HOXC cluster and BRINP3; the strongest differentially expressed microRNA also is near HOXC10. Our findings underscore the critical role of driver alterations and provide promising candidates for elucidating the biological underpinnings of PTC cLNM.

Suggested Citation

  • Lindsay M. Morton & Olivia W. Lee & Danielle M. Karyadi & Tetiana I. Bogdanova & Chip Stewart & Stephen W. Hartley & Charles E. Breeze & Sara J. Schonfeld & Elizabeth K. Cahoon & Vladimir Drozdovitch , 2024. "Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49292-z
    DOI: 10.1038/s41467-024-49292-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49292-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49292-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilong Li & Nicola D. Roberts & Jeremiah A. Wala & Ofer Shapira & Steven E. Schumacher & Kiran Kumar & Ekta Khurana & Sebastian Waszak & Jan O. Korbel & James E. Haber & Marcin Imielinski & Joachim We, 2020. "Patterns of somatic structural variation in human cancer genomes," Nature, Nature, vol. 578(7793), pages 112-121, February.
    2. Weilin Pu & Xiao Shi & Pengcheng Yu & Meiying Zhang & Zhiyan Liu & Licheng Tan & Peizhen Han & Yu Wang & Dongmei Ji & Hualei Gan & Wenjun Wei & Zhongwu Lu & Ning Qu & Jiaqian Hu & Xiaohua Hu & Zaili L, 2021. "Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Ludmil B. Alexandrov & Jaegil Kim & Nicholas J. Haradhvala & Mi Ni Huang & Alvin Wei Tian Ng & Yang Wu & Arnoud Boot & Kyle R. Covington & Dmitry A. Gordenin & Erik N. Bergstrom & S. M. Ashiqul Islam , 2020. "The repertoire of mutational signatures in human cancer," Nature, Nature, vol. 578(7793), pages 94-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasuhiko Haga & Yoshitaka Sakamoto & Keiko Kajiya & Hitomi Kawai & Miho Oka & Noriko Motoi & Masayuki Shirasawa & Masaya Yotsukura & Shun-Ichi Watanabe & Miyuki Arai & Junko Zenkoh & Kouya Shiraishi &, 2023. "Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Luan Nguyen & Arne Hoeck & Edwin Cuppen, 2022. "Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yoshitaka Sakamoto & Shuhei Miyake & Miho Oka & Akinori Kanai & Yosuke Kawai & Satoi Nagasawa & Yuichi Shiraishi & Katsushi Tokunaga & Takashi Kohno & Masahide Seki & Yutaka Suzuki & Ayako Suzuki, 2022. "Phasing analysis of lung cancer genomes using a long read sequencer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Máire Ní Leathlobhair & Anna Frangou & Ben Kinnersley & Alex J. Cornish & Daniel Chubb & Eszter Lakatos & Prabhu Arumugam & Andreas J. Gruber & Philip Law & Avraam Tapinos & G. Maria Jakobsdottir & Il, 2024. "Genomic landscape of adult testicular germ cell tumours in the 100,000 Genomes Project," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Thomas G. Paulson & Patricia C. Galipeau & Kenji M. Oman & Carissa A. Sanchez & Mary K. Kuhner & Lucian P. Smith & Kevin Hadi & Minita Shah & Kanika Arora & Jennifer Shelton & Molly Johnson & Andre Co, 2022. "Somatic whole genome dynamics of precancer in Barrett’s esophagus reveals features associated with disease progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Mischan Vali-Pour & Solip Park & Jose Espinosa-Carrasco & Daniel Ortiz-Martínez & Ben Lehner & Fran Supek, 2022. "The impact of rare germline variants on human somatic mutation processes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Adam C. Weiner & Marc J. Williams & Hongyu Shi & Ignacio Vázquez-García & Sohrab Salehi & Nicole Rusk & Samuel Aparicio & Sohrab P. Shah & Andrew McPherson, 2024. "Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Rotem Katzir & Noam Rudberg & Keren Yizhak, 2022. "Estimating tumor mutational burden from RNA-sequencing without a matched-normal sample," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Yu Chen & Amy Y. Wang & Courtney A. Barkley & Yixin Zhang & Xinyang Zhao & Min Gao & Mick D. Edmonds & Zechen Chong, 2023. "Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jinhyun Kim & Sungsik Kim & Huiran Yeom & Seo Woo Song & Kyoungseob Shin & Sangwook Bae & Han Suk Ryu & Ji Young Kim & Ahyoun Choi & Sumin Lee & Taehoon Ryu & Yeongjae Choi & Hamin Kim & Okju Kim & Yu, 2023. "Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Ewart Kuijk & Onno Kranenburg & Edwin Cuppen & Arne Van Hoeck, 2022. "Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    20. Sophie Pénisson & Amaury Lambert & Cristian Tomasetti, 2022. "Evaluating cancer etiology and risk with a mathematical model of tumor evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49292-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.