IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49174-4.html
   My bibliography  Save this article

Optimizing the design of spatial genomic studies

Author

Listed:
  • Andrew Jones

    (Princeton University)

  • Diana Cai

    (Flatiron Institute)

  • Didong Li

    (University of North Carolina at Chapel Hill)

  • Barbara E. Engelhardt

    (Gladstone Institutes
    Stanford University)

Abstract

Spatial genomic technologies characterize the relationship between the structural organization of cells and their cellular state. Despite the availability of various spatial transcriptomic and proteomic profiling platforms, these experiments remain costly and labor-intensive. Traditionally, tissue slicing for spatial sequencing involves parallel axis-aligned sections, often yielding redundant or correlated information. We propose structured batch experimental design, a method that improves the cost efficiency of spatial genomics experiments by profiling tissue slices that are maximally informative, while recognizing the destructive nature of the process. Applied to two spatial genomics studies—one to construct a spatially-resolved genomic atlas of a tissue and another to localize a region of interest in a tissue, such as a tumor—our approach collects more informative samples using fewer slices compared to traditional slicing strategies. This methodology offers a foundation for developing robust and cost-efficient design strategies, allowing spatial genomics studies to be deployed by smaller, resource-constrained labs.

Suggested Citation

  • Andrew Jones & Diana Cai & Didong Li & Barbara E. Engelhardt, 2024. "Optimizing the design of spatial genomic studies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49174-4
    DOI: 10.1038/s41467-024-49174-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49174-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49174-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Orit Rozenblatt-Rosen & Michael J. T. Stubbington & Aviv Regev & Sarah A. Teichmann, 2017. "The Human Cell Atlas: from vision to reality," Nature, Nature, vol. 550(7677), pages 451-453, October.
    2. Ed S. Lein & Michael J. Hawrylycz & Nancy Ao & Mikael Ayres & Amy Bensinger & Amy Bernard & Andrew F. Boe & Mark S. Boguski & Kevin S. Brockway & Emi J. Byrnes & Lin Chen & Li Chen & Tsuey-Ming Chen &, 2007. "Genome-wide atlas of gene expression in the adult mouse brain," Nature, Nature, vol. 445(7124), pages 168-176, January.
    3. Madhav Mantri & Gaetano J. Scuderi & Roozbeh Abedini-Nassab & Michael F. Z. Wang & David McKellar & Hao Shi & Benjamin Grodner & Jonathan T. Butcher & Iwijn De Vlaminck, 2021. "Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Lorenzo Masoero & Federico Camerlenghi & Stefano Favaro & Tamara Broderick, 2022. "More for less: predicting and maximizing genomic variant discovery via Bayesian nonparametrics [A global reference for human genetic variation]," Biometrika, Biometrika Trust, vol. 109(1), pages 17-32.
    5. Meng Zhang & Stephen W. Eichhorn & Brian Zingg & Zizhen Yao & Kaelan Cotter & Hongkui Zeng & Hongwei Dong & Xiaowei Zhuang, 2021. "Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH," Nature, Nature, vol. 598(7879), pages 137-143, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Katharina T. Schmid & Barbara Höllbacher & Cristiana Cruceanu & Anika Böttcher & Heiko Lickert & Elisabeth B. Binder & Fabian J. Theis & Matthias Heinig, 2021. "scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    8. Léa J. Becker & Clémentine Fillinger & Robin Waegaert & Sarah H. Journée & Pierre Hener & Beyza Ayazgok & Muris Humo & Meltem Karatas & Maxime Thouaye & Mithil Gaikwad & Laetitia Degiorgis & Marie des, 2023. "The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Aiko Sekita & Hiroshi Kawasaki & Ayano Fukushima-Nomura & Kiyoshi Yashiro & Keiji Tanese & Susumu Toshima & Koichi Ashizaki & Tomohiro Miyai & Junshi Yazaki & Atsuo Kobayashi & Shinichi Namba & Tatsuh, 2023. "Multifaceted analysis of cross-tissue transcriptomes reveals phenotype–endotype associations in atopic dermatitis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Ajita Shree & Musale Krushna Pavan & Hamim Zafar, 2023. "scDREAMER for atlas-level integration of single-cell datasets using deep generative model paired with adversarial classifier," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. E. R. Velasco & A. Florido & Á Flores & E. Senabre & A. Gomez-Gomez & A. Torres & A. Roca & S. Norrholm & E. L. Newman & P. Das & R. A. Ross & A. Lori & O. J. Pozo & K. J. Ressler & L. L. Garcia-Estev, 2022. "PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Yingxin Lin & Yue Cao & Elijah Willie & Ellis Patrick & Jean Y. H. Yang, 2023. "Atlas-scale single-cell multi-sample multi-condition data integration using scMerge2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49174-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.