IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49123-1.html
   My bibliography  Save this article

Optimizing cell therapy by sorting cells with high extracellular vesicle secretion

Author

Listed:
  • Doyeon Koo

    (University of California, Los Angeles)

  • Xiao Cheng

    (University of North Carolina at Chapel Hill and North Carolina State University
    University of North Carolina at Chapel Hill and North Carolina State University)

  • Shreya Udani

    (University of California, Los Angeles)

  • Sevana Baghdasarian

    (University of California, Los Angeles)

  • Dashuai Zhu

    (Columbia University)

  • Junlang Li

    (Xsome Biotech)

  • Brian Hall

    (Cytek Biosciences)

  • Natalie Tsubamoto

    (University of California, Los Angeles)

  • Shiqi Hu

    (Columbia University)

  • Jina Ko

    (University of Pennsylvania
    University of Pennsylvania)

  • Ke Cheng

    (Columbia University)

  • Dino Di Carlo

    (University of California, Los Angeles
    University of California, Los Angeles
    University of California, Los Angeles
    California NanoSystems Institute)

Abstract

Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.

Suggested Citation

  • Doyeon Koo & Xiao Cheng & Shreya Udani & Sevana Baghdasarian & Dashuai Zhu & Junlang Li & Brian Hall & Natalie Tsubamoto & Shiqi Hu & Jina Ko & Ke Cheng & Dino Di Carlo, 2024. "Optimizing cell therapy by sorting cells with high extracellular vesicle secretion," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49123-1
    DOI: 10.1038/s41467-024-49123-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49123-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49123-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin Yu & Hekai Li & Zhaowenbin Zhang & Peier Chen & Ling Wang & Xianglin Fan & Xiaodong Ning & Yuxuan Pan & Feiran Zhou & Xinyi Hu & Jiang Chang & Caiwen Ou, 2023. "Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Dashuai Zhu & Zhenhua Li & Ke Huang & Thomas G. Caranasos & Joseph S. Rossi & Ke Cheng, 2021. "Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Rene Yu-Hong Cheng & Joseph de Rutte & Cade Ellis K. Ito & Andee R. Ott & Lucie Bosler & Wei-Ying Kuo & Jesse Liang & Brian E. Hall & David J. Rawlings & Dino Di Carlo & Richard G. James, 2023. "SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinying Li & Yuejun Yao & Jiayi Zhou & Zhuoheng Yang & Chen Qiu & Yuwen Lu & Jieqi Xie & Jia Liu & Tuoying Jiang & Yaohui Kou & Zhen Ge & Ping Liang & Cong Qiu & Liyin Shen & Yang Zhu & Changyou Gao &, 2024. "Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. S. M. Shatil Shahriar & Alec D. McCarthy & Syed Muntazir Andrabi & Yajuan Su & Navatha Shree Polavoram & Johnson V. John & Mitchell P. Matis & Wuqiang Zhu & Jingwei Xie, 2024. "Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Zhang, Qianqian & Zhao, Lei & Ran, Fen, 2022. "Reducible, recyclable and reusable (3R) hydrogel electrolyte membrane based on Physical&Chemical Bi-networks and reversible sol-gel transition," Renewable Energy, Elsevier, vol. 194(C), pages 80-88.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49123-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.