IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49102-6.html
   My bibliography  Save this article

A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation

Author

Listed:
  • Li Lin Xu

    (Zhejiang University
    South China Agricultural University)

  • Meng Qi Cui

    (Zhejiang University
    South China Agricultural University)

  • Chen Xu

    (Zhejiang University
    South China Agricultural University)

  • Miao Jing Zhang

    (Zhejiang University)

  • Gui Xin Li

    (Zhejiang University)

  • Ji Ming Xu

    (Zhejiang University)

  • Xiao Dan Wu

    (Zhejiang University)

  • Chuan Zao Mao

    (Zhejiang University)

  • Wo Na Ding

    (Ningbo University)

  • Moussa Benhamed

    (Institute of Plant Sciences Paris-Saclay (IPS2))

  • Zhong Jie Ding

    (Zhejiang University)

  • Shao Jian Zheng

    (Zhejiang University
    South China Agricultural University)

Abstract

Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.

Suggested Citation

  • Li Lin Xu & Meng Qi Cui & Chen Xu & Miao Jing Zhang & Gui Xin Li & Ji Ming Xu & Xiao Dan Wu & Chuan Zao Mao & Wo Na Ding & Moussa Benhamed & Zhong Jie Ding & Shao Jian Zheng, 2024. "A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49102-6
    DOI: 10.1038/s41467-024-49102-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49102-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49102-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Erratum: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 543(7643), pages 136-136, March.
    2. Martina K. Ried & Rebekka Wild & Jinsheng Zhu & Joka Pipercevic & Kristina Sturm & Larissa Broger & Robert K. Harmel & Luciano A. Abriata & Ludwig A. Hothorn & Dorothea Fiedler & Sebastian Hiller & Mi, 2021. "Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 541(7635), pages 92-95, January.
    4. Jia Zhou & Qinli Hu & Xinlong Xiao & Deqiang Yao & Shenghong Ge & Jin Ye & Haojie Li & Rujie Cai & Renyang Liu & Fangang Meng & Chao Wang & Jian-Kang Zhu & Mingguang Lei & Weiman Xing, 2021. "Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Yukari Nagatoshi & Kenta Ikazaki & Yasufumi Kobayashi & Nobuyuki Mizuno & Ryohei Sugita & Yumiko Takebayashi & Mikiko Kojima & Hitoshi Sakakibara & Natsuko I. Kobayashi & Keitaro Tanoi & Kenichiro Fuj, 2023. "Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Namiki Mitani-Ueno & Naoki Yamaji & Sheng Huang & Yuma Yoshioka & Takaaki Miyaji & Jian Feng Ma, 2023. "A silicon transporter gene required for healthy growth of rice on land," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zeyuan Guan & Qunxia Zhang & Zhifei Zhang & Jiaqi Zuo & Juan Chen & Ruiwen Liu & Julie Savarin & Larissa Broger & Peng Cheng & Qiang Wang & Kai Pei & Delin Zhang & Tingting Zou & Junjie Yan & Ping Yin, 2022. "Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 – PHR2 complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zichao Tang & Yanxue Jiang & Chenchen Wang & Rui Zhang & Jinsong Guo & Fang Fang, 2023. "New Insight into Phosphorus Release of Rhizosphere Soil in the Water Level Fluctuation Zone," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    6. Michael Oster & Henry Reyer & Elizabeth Ball & Dario Fornara & John McKillen & Kristina Ulrich Sørensen & Hanne Damgaard Poulsen & Kim Andersson & Daniel Ddiba & Arno Rosemarin & Linda Arata & Paolo S, 2018. "Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    7. Mushtak Kisko & Vishnu Shukla & Mandeep Kaur & Nadia Bouain & Nanthana Chaiwong & Benoit Lacombe & Ajay Kumar Pandey & Hatem Rouached, 2018. "Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds," Agriculture, MDPI, vol. 8(2), pages 1-12, February.
    8. Jia Zhou & Qinli Hu & Xinlong Xiao & Deqiang Yao & Shenghong Ge & Jin Ye & Haojie Li & Rujie Cai & Renyang Liu & Fangang Meng & Chao Wang & Jian-Kang Zhu & Mingguang Lei & Weiman Xing, 2021. "Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Joka Pipercevic & Bastian Kohl & Ruta Gerasimaite & Véronique Comte-Miserez & Sarah Hostachy & Thomas Müntener & Elia Agustoni & Henning Jacob Jessen & Dorothea Fiedler & Andreas Mayer & Sebastian Hil, 2023. "Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zeyuan Guan & Juan Chen & Ruiwen Liu & Yanke Chen & Qiong Xing & Zhangmeng Du & Meng Cheng & Jianjian Hu & Wenhui Zhang & Wencong Mei & Beijing Wan & Qiang Wang & Jie Zhang & Peng Cheng & Huanyu Cai &, 2023. "The cytoplasmic synthesis and coupled membrane translocation of eukaryotic polyphosphate by signal-activated VTC complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49102-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.