IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48659-6.html
   My bibliography  Save this article

Stable pure-green organic light-emitting diodes toward Rec.2020 standard

Author

Listed:
  • Xun Tang

    (Kyushu University)

  • Tuul Tsagaantsooj

    (Kyushu University)

  • Tharindu P. B. Rajakaruna

    (Kyushu University)

  • Kai Wang

    (Soochow University)

  • Xian-Kai Chen

    (Soochow University)

  • Xiao-Hong Zhang

    (Soochow University)

  • Takuji Hatakeyama

    (Kyoto University)

  • Chihaya Adachi

    (Kyushu University
    Kyushu University)

Abstract

Manipulating dynamic behaviours of charge carriers and excitons in organic light-emitting diodes (OLEDs) is essential to simultaneously achieve high colour purity and superior operational lifetime. In this work, a comprehensive transient electroluminescence investigation reveals that incorporating a thermally activated delayed fluorescence assistant molecule with a deep lowest unoccupied molecular orbital into a bipolar host matrix effectively traps the injected electrons. Meanwhile, the behaviours of hole injection and transport are still dominantly governed by host molecules. Thus, the recombination zone notably shifts toward the interface between the emissive layer (EML) and the electron-transporting layer (ETL). To mitigate the interfacial carrier accumulation and exciton quenching, this bipolar host matrix could serve as a non-barrier functional spacer between EML/ETL, enabling the distribution of recombination zone away from this interface. Consequently, the optimized OLED exhibits a low driving voltage, promising device stability (95% of the initial luminance of 1000 cd m−2, LT95 > 430 h), and a high Commission Internationale de L’Éclairage y coordinate of 0.69. This indicates that managing the excitons through rational energy level alignment holds the potential for simultaneously satisfying Rec.2020 standard and achieving commercial-level stability.

Suggested Citation

  • Xun Tang & Tuul Tsagaantsooj & Tharindu P. B. Rajakaruna & Kai Wang & Xian-Kai Chen & Xiao-Hong Zhang & Takuji Hatakeyama & Chihaya Adachi, 2024. "Stable pure-green organic light-emitting diodes toward Rec.2020 standard," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48659-6
    DOI: 10.1038/s41467-024-48659-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48659-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48659-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Monirul Hasan & Siddhartha Saggar & Atul Shukla & Fatima Bencheikh & Jan Sobus & Sarah K. M. McGregor & Chihaya Adachi & Shih-Chun Lo & Ebinazar B. Namdas, 2022. "Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Yifan Zhang & Jaesang Lee & Stephen R. Forrest, 2014. "Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    3. Sinyeong Jung & Wai-Lung Cheung & Si-jie Li & Min Wang & Wansi Li & Cangyu Wang & Xiaoge Song & Guodan Wei & Qinghua Song & Season Si Chen & Wanqing Cai & Maggie Ng & Wai Kit Tang & Man-Chung Tang, 2023. "Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Sinyeong Jung & Wai-Lung Cheung & Si-jie Li & Min Wang & Wansi Li & Cangyu Wang & Xiaoge Song & Guodan Wei & Qinghua Song & Season Si Chen & Wanqing Cai & Maggie Ng & Wai Kit Tang & Man-Chung Tang, 2023. "Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jaewook Kim & Joonghyuk Kim & Yongjun Kim & Youngmok Son & Youngsik Shin & Hye Jin Bae & Ji Whan Kim & Sungho Nam & Yongsik Jung & Hyeonsu Kim & Sungwoo Kang & Yoonsoo Jung & Kyunghoon Lee & Hyeonho C, 2023. "Critical role of electrons in the short lifetime of blue OLEDs," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Gustavo F. Trindade & Soohwan Sul & Joonghyuk Kim & Rasmus Havelund & Anya Eyres & Sungjun Park & Youngsik Shin & Hye Jin Bae & Young Mo Sung & Lidija Matjacic & Yongsik Jung & Jungyeon Won & Woo Sung, 2023. "Direct identification of interfacial degradation in blue OLEDs using nanoscale chemical depth profiling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48659-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.