IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48404-z.html
   My bibliography  Save this article

Unconventional magnetism mediated by spin-phonon-photon coupling

Author

Listed:
  • Petros Andreas Pantazopoulos

    (Universidad Autónoma de Madrid)

  • Johannes Feist

    (Universidad Autónoma de Madrid)

  • Francisco J. García-Vidal

    (Universidad Autónoma de Madrid)

  • Akashdeep Kamra

    (Universidad Autónoma de Madrid)

Abstract

Magnetic order typically emerges due to the short-range exchange interaction between the constituent electronic spins. Recent discoveries have found a crucial role for spin-phonon coupling in various phenomena from optical ultrafast magnetization switching to dynamical control of the magnetic state. Here, we demonstrate theoretically the emergence of a biquadratic long-range interaction between spins mediated by their coupling to phonons hybridized with vacuum photons into polaritons. The resulting ordered state enabled by the exchange of virtual polaritons between spins is reminiscent of superconductivity mediated by the exchange of virtual phonons. The biquadratic nature of the spin-spin interaction promotes ordering without favoring ferro- or antiferromagnetism. It further makes the phase transition to magnetic order a first-order transition, unlike in conventional magnets. Consequently, a large magnetization develops abruptly on lowering the temperature which could enable magnetic memories admitting ultralow-power thermally-assisted writing while maintaining a high data stability. The role of photons in the phenomenon further enables an in-situ static control over the magnetism. These unique features make our predicted spin-spin interaction and magnetism highly unconventional paving the way for novel scientific and technological opportunities.

Suggested Citation

  • Petros Andreas Pantazopoulos & Johannes Feist & Francisco J. García-Vidal & Akashdeep Kamra, 2024. "Unconventional magnetism mediated by spin-phonon-photon coupling," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48404-z
    DOI: 10.1038/s41467-024-48404-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48404-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48404-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alessio Chiocchetta & Dominik Kiese & Carl Philipp Zelle & Francesco Piazza & Sebastian Diehl, 2021. "Cavity-induced quantum spin liquids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. C. Dornes & Y. Acremann & M. Savoini & M. Kubli & M. J. Neugebauer & E. Abreu & L. Huber & G. Lantz & C. A. F. Vaz & H. Lemke & E. M. Bothschafter & M. Porer & V. Esposito & L. Rettig & M. Buzzi & A. , 2019. "The ultrafast Einstein–de Haas effect," Nature, Nature, vol. 565(7738), pages 209-212, January.
    3. Florian Siegrist & Julia A. Gessner & Marcus Ossiander & Christian Denker & Yi-Ping Chang & Malte C. Schröder & Alexander Guggenmos & Yang Cui & Jakob Walowski & Ulrike Martens & J. K. Dewhurst & Ulf , 2019. "Light-wave dynamic control of magnetism," Nature, Nature, vol. 571(7764), pages 240-244, July.
    4. S. R. Tauchert & M. Volkov & D. Ehberger & D. Kazenwadel & M. Evers & H. Lange & A. Donges & A. Book & W. Kreuzpaintner & U. Nowak & P. Baum, 2022. "Polarized phonons carry angular momentum in ultrafast demagnetization," Nature, Nature, vol. 602(7895), pages 73-77, February.
    5. R. Ramos & T. Hioki & Y. Hashimoto & T. Kikkawa & P. Frey & A. J. E. Kreil & V. I. Vasyuchka & A. A. Serga & B. Hillebrands & E. Saitoh, 2019. "Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyuhwe Kang & Hiroki Omura & Daniel Yesudas & OukJae Lee & Kyung-Jin Lee & Hyun-Woo Lee & Tomoyasu Taniyama & Gyung-Min Choi, 2023. "Spin current driven by ultrafast magnetization of FeRh," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Cyril Léveillé & Erick Burgos-Parra & Yanis Sassi & Fernando Ajejas & Valentin Chardonnet & Emanuele Pedersoli & Flavio Capotondi & Giovanni Ninno & Francesco Maccherozzi & Sarnjeet Dhesi & David M. B, 2022. "Ultrafast time-evolution of chiral Néel magnetic domain walls probed by circular dichroism in x-ray resonant magnetic scattering," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Jun Cui & Emil Viñas Boström & Mykhaylo Ozerov & Fangliang Wu & Qianni Jiang & Jiun-Haw Chu & Changcun Li & Fucai Liu & Xiaodong Xu & Angel Rubio & Qi Zhang, 2023. "Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Hiroki Ueda & Roman Mankowsky & Eugenio Paris & Mathias Sander & Yunpei Deng & Biaolong Liu & Ludmila Leroy & Abhishek Nag & Elizabeth Skoropata & Chennan Wang & Victor Ukleev & Gérard Sylvester Perre, 2023. "Non-equilibrium dynamics of spin-lattice coupling," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. M. A. Weiss & A. Herbst & J. Schlegel & T. Dannegger & M. Evers & A. Donges & M. Nakajima & A. Leitenstorfer & S. T. B. Goennenwein & U. Nowak & T. Kurihara, 2023. "Discovery of ultrafast spontaneous spin switching in an antiferromagnet by femtosecond noise correlation spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48404-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.