IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48369-z.html
   My bibliography  Save this article

Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans

Author

Listed:
  • Rizwanul Haque

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Sonu Peedikayil Kurien

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Hagar Setty

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Yehuda Salzberg

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Gil Stelzer

    (Weizmann Institute of Science)

  • Einav Litvak

    (Weizmann Institute of Science)

  • Hila Gingold

    (Tel Aviv University)

  • Oded Rechavi

    (Tel Aviv University)

  • Meital Oren-Suissa

    (Weizmann Institute of Science
    Weizmann Institute of Science)

Abstract

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.

Suggested Citation

  • Rizwanul Haque & Sonu Peedikayil Kurien & Hagar Setty & Yehuda Salzberg & Gil Stelzer & Einav Litvak & Hila Gingold & Oded Rechavi & Meital Oren-Suissa, 2024. "Sex-specific developmental gene expression atlas unveils dimorphic gene networks in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48369-z
    DOI: 10.1038/s41467-024-48369-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48369-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48369-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Molly B. Reilly & Cyril Cros & Erdem Varol & Eviatar Yemini & Oliver Hobert, 2020. "Unique homeobox codes delineate all the neuron classes of C. elegans," Nature, Nature, vol. 584(7822), pages 595-601, August.
    2. Brenton R. Graveley & Angela N. Brooks & Joseph W. Carlson & Michael O. Duff & Jane M. Landolin & Li Yang & Carlo G. Artieri & Marijke J. van Baren & Nathan Boley & Benjamin W. Booth & James B. Brown , 2011. "The developmental transcriptome of Drosophila melanogaster," Nature, Nature, vol. 471(7339), pages 473-479, March.
    3. Hagar Setty & Yehuda Salzberg & Shadi Karimi & Elisheva Berent-Barzel & Michael Krieg & Meital Oren-Suissa, 2022. "Sexually dimorphic architecture and function of a mechanosensory circuit in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Amie Wheeldon & Paweł Szymański & Adrian Surmacki & Tomasz S Osiejuk & Marc Naguib, 2021. "Song type and song type matching are important for joint territorial defense in a duetting songbird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(5), pages 883-894.
    5. Ying Yu & James C. Fuscoe & Chen Zhao & Chao Guo & Meiwen Jia & Tao Qing & Desmond I. Bannon & Lee Lancashire & Wenjun Bao & Tingting Du & Heng Luo & Zhenqiang Su & Wendell D. Jones & Carrie L. Moland, 2014. "A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher P. Arnold & Analí Migueles Lozano & Frederick G. Mann & Stephanie H. Nowotarski & Julianna O. Haug & Jeffrey J. Lange & Chris W. Seidel & Alejandro Sánchez Alvarado, 2021. "Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ruth Styfhals & Grygoriy Zolotarov & Gert Hulselmans & Katina I. Spanier & Suresh Poovathingal & Ali M. Elagoz & Seppe Winter & Astrid Deryckere & Nikolaus Rajewsky & Giovanna Ponte & Graziano Fiorito, 2022. "Cell type diversity in a developing octopus brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Orshay Gabay & Yoav Shoshan & Eli Kopel & Udi Ben-Zvi & Tomer D. Mann & Noam Bressler & Roni Cohen‐Fultheim & Amos A. Schaffer & Shalom Hillel Roth & Ziv Tzur & Erez Y. Levanon & Eli Eisenberg, 2022. "Landscape of adenosine-to-inosine RNA recoding across human tissues," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Weina Xu & Jinyi Liu & Huan Qi & Ruolin Si & Zhiguang Zhao & Zhiju Tao & Yuchuan Bai & Shipeng Hu & Xiaohan Sun & Yulin Cong & Haoye Zhang & Duchangjiang Fan & Long Xiao & Yangyang Wang & Yongbin Li &, 2024. "A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Yongbin Li & Siyu Chen & Weihong Liu & Di Zhao & Yimeng Gao & Shipeng Hu & Hanyu Liu & Yuanyuan Li & Lei Qu & Xiao Liu, 2024. "A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Bowen Dempsey & Selvee Sungeelee & Phillip Bokiniec & Zoubida Chettouh & Séverine Diem & Sandra Autran & Evan R. Harrell & James F. A. Poulet & Carmen Birchmeier & Harry Carey & Auguste Genovesio & Si, 2021. "A medullary centre for lapping in mice," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Kellianne D. Alexander & Shankar Ramachandran & Kasturi Biswas & Christopher M. Lambert & Julia Russell & Devyn B. Oliver & William Armstrong & Monika Rettler & Samuel Liu & Maria Doitsidou & Claire B, 2023. "The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Safo, Sandra E. & Ahn, Jeongyoun, 2016. "General sparse multi-class linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 81-90.
    9. Maja Zupančič & Erik Keimpema & Evgenii O. Tretiakov & Stephanie J. Eder & Itamar Lev & Lukas Englmaier & Pradeep Bhandari & Simone A. Fietz & Wolfgang Härtig & Estelle Renaux & Andreas Villunger & To, 2024. "Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Zhiping Zhang & Bongmin Bae & Winston H. Cuddleston & Pedro Miura, 2023. "Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48369-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.