IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48284-3.html
   My bibliography  Save this article

circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models

Author

Listed:
  • Qilin Huang

    (Tianjin Medical University
    PLA General Hospital)

  • Ziqiang Chu

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051)

  • Zihao Wang

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051
    Chinese PLA Medical School)

  • Qiankun Li

    (The First Medical Center, Chinese PLA General Hospital)

  • Sheng Meng

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051)

  • Yao Lu

    (The First Medical Center, Chinese PLA General Hospital)

  • Kui Ma

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051)

  • Shengnan Cui

    (PLA General Hospital
    China Academy of Chinese Medical Science, Xiyuan Hospital)

  • Wenzhi Hu

    (PLA General Hospital)

  • Wenhua Zhang

    (PLA General Hospital)

  • Qian Wei

    (PLA General Hospital)

  • Yanlin Qu

    (PLA General Hospital)

  • Haihong Li

    (the Seventh Affiliated Hospital of Sun Yat-sen University)

  • Xiaobing Fu

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051
    Repair and Regeneration
    Sichuan University)

  • Cuiping Zhang

    (PLA General Hospital
    Chinese Academy of Medical Sciences, 2019RU051
    Repair and Regeneration)

Abstract

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.

Suggested Citation

  • Qilin Huang & Ziqiang Chu & Zihao Wang & Qiankun Li & Sheng Meng & Yao Lu & Kui Ma & Shengnan Cui & Wenzhi Hu & Wenhua Zhang & Qian Wei & Yanlin Qu & Haihong Li & Xiaobing Fu & Cuiping Zhang, 2024. "circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48284-3
    DOI: 10.1038/s41467-024-48284-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48284-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48284-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Botai Li & Lili Zhu & Chunlai Lu & Cun Wang & Hui Wang & Haojie Jin & Xuhui Ma & Zhuoan Cheng & Chengtao Yu & Siying Wang & Qiaozhu Zuo & Yangyang Zhou & Jun Wang & Chen Yang & Yuanyuan Lv & Liyan Jia, 2021. "circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Ri-Xin Chen & Xin Chen & Liang-Ping Xia & Jia-Xing Zhang & Zhi-Zhong Pan & Xiao-Dan Ma & Kai Han & Jie-Wei Chen & Jean-Gabrie Judde & Olivier Deas & Feng Wang & Ning-Fang Ma & Xinyuan Guan & Jing-Ping, 2019. "N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjuan Zhang & Bowei Zhou & Xiao Yang & Jin Zhao & Jingjuan Hu & Yuqi Ding & Shuteng Zhan & Yifeng Yang & Jun Chen & Fu Zhang & Bingcheng Zhao & Fan Deng & Zebin Lin & Qishun Sun & Fangling Zhang & Z, 2023. "Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Zhe Gong & Jinjin Zhu & Junxin Chen & Fan Feng & Haitao Zhang & Zheyuan Zhang & Chenxin Song & Kaiyu Liang & Shuhui Yang & Shunwu Fan & Xiangqian Fang & Shuying Shen, 2023. "CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Peng Wang & Zhitao Huang & Yili Peng & Hongwei Li & Tong Lin & Yingyu Zhao & Zheng Hu & Zhanmei Zhou & Weijie Zhou & Youhua Liu & Fan Fan Hou, 2022. "Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Zehua Shang & Sitao Zhang & Jinrui Wang & Lili Zhou & Xinyue Zhang & Daniel D. Billadeau & Peiguo Yang & Lingqiang Zhang & Fangfang Zhou & Peng Bai & Da Jia, 2024. "TRIM25 predominately associates with anti-viral stress granules," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Dario Dattilo & Gaia Di Timoteo & Adriano Setti & Andrea Giuliani & Giovanna Peruzzi & Manuel Beltran Nebot & Alvaro CentrĂ³n-Broco & Davide Mariani & Chiara Mozzetta & Irene Bozzoni, 2023. "The m6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48284-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.