IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48184-6.html
   My bibliography  Save this article

Cadmium binding by the F-box domain induces p97-mediated SCF complex disassembly to activate stress response programs

Author

Listed:
  • Linda Lauinger

    (University of California, Irvine)

  • Anna Andronicos

    (University of California, Irvine)

  • Karin Flick

    (University of California, Irvine)

  • Clinton Yu

    (University of California, Irvine)

  • Geetha Durairaj

    (University of California, Irvine)

  • Lan Huang

    (University of California, Irvine)

  • Peter Kaiser

    (University of California, Irvine)

Abstract

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.

Suggested Citation

  • Linda Lauinger & Anna Andronicos & Karin Flick & Clinton Yu & Geetha Durairaj & Lan Huang & Peter Kaiser, 2024. "Cadmium binding by the F-box domain induces p97-mediated SCF complex disassembly to activate stress response programs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48184-6
    DOI: 10.1038/s41467-024-48184-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48184-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48184-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Kepinski & Ottoline Leyser, 2005. "The Arabidopsis F-box protein TIR1 is an auxin receptor," Nature, Nature, vol. 435(7041), pages 446-451, May.
    2. Nihal Dharmasiri & Sunethra Dharmasiri & Mark Estelle, 2005. "The F-box protein TIR1 is an auxin receptor," Nature, Nature, vol. 435(7041), pages 441-445, May.
    3. Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ryan P. Wurz & Huan Rui & Ken Dellamaggiore & Sudipa Ghimire-Rijal & Kaylee Choi & Kate Smither & Albert Amegadzie & Ning Chen & Xiaofen Li & Abhisek Banerjee & Qing Chen & Dane Mohl & Amit Vaish, 2023. "Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48184-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.