IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48090-x.html
   My bibliography  Save this article

Efficient recovery and recycling/upcycling of precious metals using hydrazide-functionalized star-shaped polymers

Author

Listed:
  • Seung Su Shin

    (Korea University)

  • Youngkyun Jung

    (Korea Institute of Science and Technology)

  • Sungkwon Jeon

    (Korea University)

  • Sung-Joon Park

    (Korea University)

  • Su-Jin Yoon

    (Korea Institute of Science and Technology)

  • Kyung-Won Jung

    (Korea Institute of Science and Technology)

  • Jae-Woo Choi

    (Korea Institute of Science and Technology
    Korea National University of Science and Technology)

  • Jung-Hyun Lee

    (Korea University)

Abstract

There is a growing demand for adsorption technologies for recovering and recycling precious metals (PMs) in various industries. Unfortunately, amine-functionalized polymers widely used as metal adsorbents are ineffective at recovering PMs owing to their unsatisfactory PM adsorption performance. Herein, a star-shaped, hydrazide-functionalized polymer (S-PAcH) is proposed as a readily recoverable standalone adsorbent with high PM adsorption performance. The compact chain structure of S-PAcH containing numerous hydrazide groups with strong reducibility promotes PM adsorption by enhancing PM reduction while forming large, collectable precipitates. Compared with previously reported PM adsorbents, commercial amine polymers, and reducing agents, S-PAcH exhibited significantly higher adsorption capacity, selectivity, and kinetics toward three PMs (gold, palladium, and platinum) with model, simulated, and real-world feed solutions. The superior PM recovery performance of S-PAcH was attributed to its strong reduction capability combined with its chemisorption mechanism. Moreover, PM-adsorbed S-PAcH could be refined into high-purity PMs via calcination, directly utilized (upcycled) as catalysts for dye reduction, or regenerated for reuse, demonstrating its high practical feasibility. Our proposed PM adsorbents would have a tremendous impact on various industrial sectors from the perspectives of environmental protection and sustainable development.

Suggested Citation

  • Seung Su Shin & Youngkyun Jung & Sungkwon Jeon & Sung-Joon Park & Su-Jin Yoon & Kyung-Won Jung & Jae-Woo Choi & Jung-Hyun Lee, 2024. "Efficient recovery and recycling/upcycling of precious metals using hydrazide-functionalized star-shaped polymers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48090-x
    DOI: 10.1038/s41467-024-48090-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48090-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48090-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luke M. M. Kinsman & Bryne T. Ngwenya & Carole A. Morrison & Jason B. Love, 2021. "Tuneable separation of gold by selective precipitation using a simple and recyclable diamide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang Wu & Yu Wang & Chun Tang & Leighton O. Jones & Bo Song & Xiao-Yang Chen & Long Zhang & Yong Wu & Charlotte L. Stern & George C. Schatz & Wenqi Liu & J. Fraser Stoddart, 2023. "High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Fei Li & Jiuyi Zhu & Pengzhan Sun & Mingrui Zhang & Zhenqing Li & Dingxin Xu & Xinyu Gong & Xiaolong Zou & A. K. Geim & Yang Su & Hui-Ming Cheng, 2022. "Highly efficient and selective extraction of gold by reduced graphene oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jie Luo & Xiao Luo & Mo Xie & Hao-Zhen Li & Haiyan Duan & Hou-Gan Zhou & Rong-Jia Wei & Guo-Hong Ning & Dan Li, 2022. "Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Joseph G. O’Connell-Danes & Bryne T. Ngwenya & Carole A. Morrison & Jason B. Love, 2022. "Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48090-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.