IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47980-4.html
   My bibliography  Save this article

Protein mimetic 2D FAST rescues alpha synuclein aggregation mediated early and post disease Parkinson’s phenotypes

Author

Listed:
  • Nicholas H. Stillman

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Johnson A. Joseph

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Jemil Ahmed

    (2155 E. Wesley Ave, Suite 579, University of Denver
    Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver)

  • Charles Zuwu Baysah

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Ryan A. Dohoney

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Tyler D. Ball

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Alexandra G. Thomas

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Tessa C. Fitch

    (2155 E. Wesley Ave, Suite 579, University of Denver)

  • Courtney M. Donnelly

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver)

  • Sunil Kumar

    (F.W. Olin Hall, 2190 E Iliff Ave, University of Denver
    2155 E. Wesley Ave, Suite 579, University of Denver
    Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver)

Abstract

Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson’s disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson’s disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson’s disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.

Suggested Citation

  • Nicholas H. Stillman & Johnson A. Joseph & Jemil Ahmed & Charles Zuwu Baysah & Ryan A. Dohoney & Tyler D. Ball & Alexandra G. Thomas & Tessa C. Fitch & Courtney M. Donnelly & Sunil Kumar, 2024. "Protein mimetic 2D FAST rescues alpha synuclein aggregation mediated early and post disease Parkinson’s phenotypes," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47980-4
    DOI: 10.1038/s41467-024-47980-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47980-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47980-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luc Bousset & Laura Pieri & Gemma Ruiz-Arlandis & Julia Gath & Poul Henning Jensen & Birgit Habenstein & Karine Madiona & Vincent Olieric & Anja Böckmann & Beat H. Meier & Ronald Melki, 2013. "Structural and functional characterization of two alpha-synuclein strains," Nature Communications, Nature, vol. 4(1), pages 1-13, December.
    2. L. Palanikumar & Laura Karpauskaite & Mohamed Al-Sayegh & Ibrahim Chehade & Maheen Alam & Sarah Hassan & Debabrata Maity & Liaqat Ali & Mona Kalmouni & Yamanappa Hunashal & Jemil Ahmed & Tatiana Houho, 2021. "Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Mohammad Shahnawaz & Abhisek Mukherjee & Sandra Pritzkow & Nicolas Mendez & Prakruti Rabadia & Xiangan Liu & Bo Hu & Ann Schmeichel & Wolfgang Singer & Gang Wu & Ah-Lim Tsai & Hamid Shirani & K. Peter, 2020. "Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy," Nature, Nature, vol. 578(7794), pages 273-277, February.
    4. Jemil Ahmed & Tessa C. Fitch & Courtney M. Donnelly & Johnson A. Joseph & Tyler D. Ball & Mikaela M. Bassil & Ahyun Son & Chen Zhang & Aurélie Ledreux & Scott Horowitz & Yan Qin & Daniel Paredes & Sun, 2022. "Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemil Ahmed & Tessa C. Fitch & Courtney M. Donnelly & Johnson A. Joseph & Tyler D. Ball & Mikaela M. Bassil & Ahyun Son & Chen Zhang & Aurélie Ledreux & Scott Horowitz & Yan Qin & Daniel Paredes & Sun, 2022. "Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Derya Emin & Yu P. Zhang & Evgeniia Lobanova & Alyssa Miller & Xuecong Li & Zengjie Xia & Helen Dakin & Dimitrios I. Sideris & Jeff Y. L. Lam & Rohan T. Ranasinghe & Antonina Kouli & Yanyan Zhao & Sum, 2022. "Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Simone Bido & Sharon Muggeo & Luca Massimino & Matteo Jacopo Marzi & Serena Gea Giannelli & Elena Melacini & Melania Nannoni & Diana Gambarè & Edoardo Bellini & Gabriele Ordazzo & Greta Rossi & Camill, 2021. "Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Tomas Venit & Oscar Sapkota & Wael Said Abdrabou & Palanikumar Loganathan & Renu Pasricha & Syed Raza Mahmood & Nadine Hosny El Said & Shimaa Sherif & Sneha Thomas & Salah Abdelrazig & Shady Amin & Da, 2023. "Positive regulation of oxidative phosphorylation by nuclear myosin 1 protects cells from metabolic reprogramming and tumorigenesis in mice," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    7. Dhruva D. Dhavale & Alexander M. Barclay & Collin G. Borcik & Katherine Basore & Deborah A. Berthold & Isabelle R. Gordon & Jialu Liu & Moses H. Milchberg & Jennifer Y. O’Shea & Michael J. Rau & Zacha, 2024. "Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47980-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.