IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47799-z.html
   My bibliography  Save this article

CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition

Author

Listed:
  • Irene Andreu-Saumell

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Alba Rodriguez-Garcia

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Vanessa Mühlgrabner

    (Institute for Hygiene and Applied Immunology)

  • Marta Gimenez-Alejandre

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Berta Marzal

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Joan Castellsagué

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Fara Brasó-Maristany

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Hugo Calderon

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Laura Angelats

    (Fundació Clínic Recerca Biomédica- IDIBAPS
    University of Barcelona)

  • Salut Colell

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Mara Nuding

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Marta Soria-Castellano

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Paula Barbao

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

  • Aleix Prat

    (Fundació Clínic Recerca Biomédica- IDIBAPS
    University of Barcelona
    Hospital Clínic de Barcelona)

  • Alvaro Urbano-Ispizua

    (Fundació Clínic Recerca Biomédica- IDIBAPS
    University of Barcelona)

  • Johannes B. Huppa

    (Institute for Hygiene and Applied Immunology)

  • Sonia Guedan

    (Fundació Clínic Recerca Biomédica- IDIBAPS)

Abstract

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.

Suggested Citation

  • Irene Andreu-Saumell & Alba Rodriguez-Garcia & Vanessa Mühlgrabner & Marta Gimenez-Alejandre & Berta Marzal & Joan Castellsagué & Fara Brasó-Maristany & Hugo Calderon & Laura Angelats & Salut Colell &, 2024. "CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47799-z
    DOI: 10.1038/s41467-024-47799-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47799-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47799-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohit Sachdeva & Brian W. Busser & Sonal Temburni & Billal Jahangiri & Anne-Sophie Gautron & Alan Maréchal & Alexandre Juillerat & Alan Williams & Stéphane Depil & Philippe Duchateau & Laurent Poirot , 2019. "Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Fan Zou & Lijuan Lu & Jun Liu & Baijin Xia & Wanying Zhang & Qifei Hu & Weiwei Liu & Yiwen Zhang & Yingtong Lin & Shuliang Jing & Mei Huang & Bifen Huang & Bingfeng Liu & Hui Zhang, 2019. "Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Laura Evgin & Amanda L. Huff & Phonphimon Wongthida & Jill Thompson & Tim Kottke & Jason Tonne & Matthew Schuelke & Katayoun Ayasoufi & Christopher B. Driscoll & Kevin G. Shim & Pierce Reynolds & Dile, 2020. "Oncolytic virus-derived type I interferon restricts CAR T cell therapy," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Robbie G. Majzner & Sneha Ramakrishna & Kristen W. Yeom & Shabnum Patel & Harshini Chinnasamy & Liora M. Schultz & Rebecca M. Richards & Li Jiang & Valentin Barsan & Rebecca Mancusi & Anna C. Geraghty, 2022. "GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas," Nature, Nature, vol. 603(7903), pages 934-941, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumin Jo & Shipra Das & Alan Williams & Anne-Sophie Chretien & Thomas Pagliardini & Aude Roy & Jorge Postigo Fernandez & Diane Clerre & Billal Jahangiri & Isabelle Chion-Sotinel & Sandra Rozlan & Emil, 2022. "Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Veronika Bandara & Jade Foeng & Batjargal Gundsambuu & Todd S. Norton & Silvana Napoli & Dylan J. McPeake & Timona S. Tyllis & Elaheh Rohani-Rad & Caitlin Abbott & Stuart J. Mills & Lih Y. Tan & Emma , 2023. "Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Le Qin & Yuanbin Cui & Tingjie Yuan & Dongmei Chen & Ruocong Zhao & Shanglin Li & Zhiwu Jiang & Qiting Wu & Youguo Long & Suna Wang & Zhaoyang Tang & Huixia Pan & Xiaoping Li & Wei Wei & Jie Yang & Xu, 2022. "Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Sameeha Jilani & Justin D. Saco & Edurne Mugarza & Aleida Pujol-Morcillo & Jeffrey Chokry & Clement Ng & Gabriel Abril-Rodriguez & David Berger-Manerio & Ami Pant & Jane Hu & Rubi Gupta & Agustin Vega, 2024. "CAR-T cell therapy targeting surface expression of TYRP1 to treat cutaneous and rare melanoma subtypes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Rocío Castellanos-Rueda & Raphaël B. Roberto & Florian Bieberich & Fabrice S. Schlatter & Darya Palianina & Oanh T. P. Nguyen & Edo Kapetanovic & Heinz Läubli & Andreas Hierlemann & Nina Khanna & Sai , 2022. "speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Derek Lee & Zachary Spencer Dunn & Wenbin Guo & Carl J. Rosenthal & Natalie E. Penn & Yanqi Yu & Kuangyi Zhou & Zhe Li & Feiyang Ma & Miao Li & Tsun-Ching Song & Xinjian Cen & Yan-Ruide Li & Jin J. Zh, 2023. "Unlocking the potential of allogeneic Vδ2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47799-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.