IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47724-4.html
   My bibliography  Save this article

Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications

Author

Listed:
  • Jens B. Simonsen

    (Jbsimonsen Consult)

Abstract

No abstract is available for this item.

Suggested Citation

  • Jens B. Simonsen, 2024. "Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47724-4
    DOI: 10.1038/s41467-024-47724-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47724-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47724-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junguang Wu & Xuan Bai & Liang Yan & Didar Baimanov & Yalin Cong & Peiyu Quan & Rui Cai & Yong Guan & Wei Bu & Binhua Lin & Jing Wang & Shengtao Yu & Shijiao Li & Yu Chong & Yang Li & Guoqing Hu & Yul, 2024. "Selective regulation of macrophage lipid metabolism via nanomaterials’ surface chemistry," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Kexin Su & Lu Shi & Tao Sheng & Xinxin Yan & Lixin Lin & Chaoyang Meng & Shiqi Wu & Yuxuan Chen & Yao Zhang & Chaorong Wang & Zichuan Wang & Junjie Qiu & Jiahui Zhao & Tengfei Xu & Yuan Ping & Zhen Gu, 2024. "Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47724-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.