IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47687-6.html
   My bibliography  Save this article

An estrogen receptor α-derived peptide improves glucose homeostasis during obesity

Author

Listed:
  • Wanbao Yang

    (Texas A&M University)

  • Wen Jiang

    (Texas A&M University)

  • Wang Liao

    (Texas A&M University)

  • Hui Yan

    (Texas A&M University)

  • Weiqi Ai

    (Texas A&M University)

  • Quan Pan

    (Texas A&M University)

  • Wesley A. Brashear

    (Texas A&M University)

  • Yong Xu

    (Baylor College of Medicine)

  • Ling He

    (Johns Hopkins University School of Medicine)

  • Shaodong Guo

    (Texas A&M University)

Abstract

Estrogen receptor α (ERα) plays a crucial role in regulating glucose and energy homeostasis during type 2 diabetes mellitus (T2DM). However, the underlying mechanisms remain incompletely understood. Here we find a ligand-independent effect of ERα on the regulation of glucose homeostasis. Deficiency of ERα in the liver impairs glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies reveal that ERα promotes hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediates the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we identify a peptide based on ERα 1-280 domain and find that ERα-derived peptide increases IRS1 stability and enhances insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly improves glucose homeostasis and serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.

Suggested Citation

  • Wanbao Yang & Wen Jiang & Wang Liao & Hui Yan & Weiqi Ai & Quan Pan & Wesley A. Brashear & Yong Xu & Ling He & Shaodong Guo, 2024. "An estrogen receptor α-derived peptide improves glucose homeostasis during obesity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47687-6
    DOI: 10.1038/s41467-024-47687-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47687-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47687-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruisheng Song & Wei Peng & Yan Zhang & Fengxiang Lv & Hong-Kun Wu & Jiaojiao Guo & Yongxing Cao & Yanbin Pi & Xin Zhang & Li Jin & Mao Zhang & Peng Jiang & Fenghua Liu & Shaoshuai Meng & Xiuqin Zhang , 2013. "Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders," Nature, Nature, vol. 494(7437), pages 375-379, February.
    2. Tommaso Simoncini & Ali Hafezi-Moghadam & Derek P. Brazil & Klaus Ley & William W. Chin & James K. Liao, 2000. "Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase," Nature, Nature, vol. 407(6803), pages 538-541, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuemin Ma & Lei Ding & Zhenhai Li & Chun Zhou, 2023. "Structural basis for TRIM72 oligomerization during membrane damage repair," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Fei Xie & Bin Liu & Wen Qiao & Jing-zhen He & Jie Cheng & Zhao-yang Wang & Ya-min Hou & Xu Zhang & Bo-han Xu & Yun Zhang & Yu-guo Chen & Ming-xiang Zhang, 2024. "Smooth muscle NF90 deficiency ameliorates diabetic atherosclerotic calcification in male mice via FBXW7-AGER1-AGEs axis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Daewon Lee & Eunju Yoon & Su Jin Ham & Kunwoo Lee & Hansaem Jang & Daihn Woo & Da Hyun Lee & Sehyeon Kim & Sekyu Choi & Jongkyeong Chung, 2024. "Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Akiko Funaki & Hyunjun Gam & Tomoka Matsuda & Akira Ishikawa & Mizuki Yamada & Nodoka Ikegami & Yuriko Nishikawa & Mikako Sakamaki-Sunaga, 2022. "Influence of Menstrual Cycle on Leukocyte Response Following Exercise-Induced Muscle Damage," IJERPH, MDPI, vol. 19(15), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47687-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.