IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47499-8.html
   My bibliography  Save this article

The gene “degrees of kevin bacon” (dokb) regulates a social network behaviour in Drosophila melanogaster

Author

Listed:
  • Rebecca Rooke

    (University of Toronto at Mississauga
    University of Toronto)

  • Joshua J. Krupp

    (University of Toronto at Mississauga)

  • Amara Rasool

    (University of Toronto at Mississauga
    University of Toronto)

  • Mireille Golemiec

    (University of Toronto at Mississauga)

  • Megan Stewart

    (University of Toronto at Mississauga)

  • Jonathan Schneider

    (University of Toronto at Mississauga)

  • Joel D. Levine

    (University of Toronto at Mississauga
    University of Toronto)

Abstract

Social networks are a mathematical representation of interactions among individuals which are prevalent across various animal species. Studies of human populations have shown the breadth of what can spread throughout a social network: obesity, smoking cessation, happiness, drug use and divorce. ‘Betweenness centrality’ is a key property of social networks that indicates an individual’s importance in facilitating communication and cohesion within the network. Heritability of betweenness centrality has been suggested in several species, however the genetic regulation of this property remains enigmatic. Here, we demonstrate that the gene CG14109, referred to as degrees of kevin bacon (dokb), influences betweenness centrality in Drosophila melanogaster. We identify strain-specific alleles of dokb with distinct amino acid sequences and when the dokb allele is exchanged between strains, flies exhibit the betweenness centrality pattern dictated by the donor allele. By inserting a GAL4 reporter into the dokb locus, we confirm that dokb is expressed in the central nervous system. These findings define a novel genetic entry point to study social network structure and thereby establish gene-to-social structure relationships. While dokb sequence homology is exclusive to Diptera, we anticipate that dokb-associated molecular pathways could unveil convergent neural mechanisms of social behaviour that apply in diverse animal species.

Suggested Citation

  • Rebecca Rooke & Joshua J. Krupp & Amara Rasool & Mireille Golemiec & Megan Stewart & Jonathan Schneider & Joel D. Levine, 2024. "The gene “degrees of kevin bacon” (dokb) regulates a social network behaviour in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47499-8
    DOI: 10.1038/s41467-024-47499-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47499-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47499-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    2. Yuanjie Sun & Rong Qiu & Xiaonan Li & Yaxin Cheng & Shan Gao & Fanchen Kong & Li Liu & Yan Zhu, 2020. "Social attraction in Drosophila is regulated by the mushroom body and serotonergic system," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Frédéric B. Piel & Anand P. Patil & Rosalind E. Howes & Oscar A. Nyangiri & Peter W. Gething & Thomas N. Williams & David J. Weatherall & Simon I. Hay, 2010. "Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    4. Jean-Christophe Billeter & Jade Atallah & Joshua J. Krupp & Jocelyn G. Millar & Joel D. Levine, 2009. "Specialized cells tag sexual and species identity in Drosophila melanogaster," Nature, Nature, vol. 461(7266), pages 987-991, October.
    5. Daizaburo Shizuka & Allison E Johnson & Leigh Simmons, 2020. "How demographic processes shape animal social networks," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 1-11.
    6. Yuanjie Sun & Rong Qiu & Xiaonan Li & Yaxin Cheng & Shan Gao & Fanchen Kong & Li Liu & Yan Zhu, 2020. "Author Correction: Social attraction in Drosophila is regulated by the mushroom body and serotonergic system," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    7. Liming Wang & David J. Anderson, 2010. "Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila," Nature, Nature, vol. 463(7278), pages 227-231, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas A. Verschut & Renny Ng & Nicolas P. Doubovetzky & Guillaume Calvez & Jan L. Sneep & Adriaan J. Minnaard & Chih-Ying Su & Mikael A. Carlsson & Bregje Wertheim & Jean-Christophe Billeter, 2023. "Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Yi Zhang & Kaihua Chen & Guilong Zhu & Richard C. M. Yam & Jiancheng Guan, 2016. "Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1383-1415, September.
    3. Ali Najmi & Taha H. Rashidi & Alireza Abbasi & S. Travis Waller, 2017. "Reviewing the transport domain: an evolutionary bibliometrics and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 843-865, February.
    4. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Jiancheng Guan & Lanxin Pang, 2018. "Bidirectional relationship between network position and knowledge creation in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 201-222, April.
    6. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    7. Falk Strotebeck, 2014. "Running with the pack? The role of Universities of applied science in a German research network," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(2), pages 139-156, October.
    8. Chipo Chimhundu & Kylie Jager & Tania Douglas, 2015. "Sectoral collaboration networks for cardiovascular medical device development in South Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1721-1741, December.
    9. Guijie Zhang & Luning Liu & Yuqiang Feng & Zhen Shao & Yongli Li, 2014. "Cext-N index: a network node centrality measure for collaborative relationship distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 291-307, October.
    10. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    11. Stefano Scarazzati & Lili Wang, 2019. "The effect of collaborations on scientific research output: the case of nanoscience in Chinese regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 839-868, November.
    12. Xiao, Shiying & Yan, Jun & Zhang, Panpan, 2022. "Incorporating auxiliary information in betweenness measure for input–output networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Anahita Hajibabaei & Andrea Schiffauerova & Ashkan Ebadi, 2023. "Women and key positions in scientific collaboration networks: analyzing central scientists’ profiles in the artificial intelligence ecosystem through a gender lens," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1219-1240, February.
    14. Liliana Arroyo Moliner & Eva Gallardo-Gallardo & Pedro Gallo de Puelles, 2017. "Understanding scientific communities: a social network approach to collaborations in Talent Management research," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1439-1462, December.
    15. Yutao Sun & Kai Liu, 2016. "Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 201-220, July.
    16. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    17. Lili Xu & Fanrui Su & Jie Zhang & Na Zhang, 2022. "High-Speed Rail Network Structural Characteristics and Evolution in China," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    18. Xaver Neumeyer & Susana C. Santos & António Caetano & Pamela Kalbfleisch, 2019. "Entrepreneurship ecosystems and women entrepreneurs: a social capital and network approach," Small Business Economics, Springer, vol. 53(2), pages 475-489, August.
    19. Daizaburo Shizuka & Allison E Johnson & Leigh Simmons, 2020. "The long view on demographic effects on social networks: a response to comments on Shizuka and Johnson," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 19-20.
    20. Xiaoling Sun & Hongfei Lin & Kan Xu & Kun Ding, 2015. "How we collaborate: characterizing, modeling and predicting scientific collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 43-60, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47499-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.