IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47481-4.html
   My bibliography  Save this article

Ventral tegmental area dopamine projections to the hippocampus trigger long-term potentiation and contextual learning

Author

Listed:
  • Fares J. P. Sayegh

    (Université de Toulouse; CNRS, UPS)

  • Lionel Mouledous

    (Université de Toulouse; CNRS, UPS)

  • Catherine Macri

    (Université de Toulouse; CNRS, UPS)

  • Juliana Pi Macedo

    (Université de Toulouse; CNRS, UPS)

  • Camille Lejards

    (Université de Toulouse; CNRS, UPS)

  • Claire Rampon

    (Université de Toulouse; CNRS, UPS)

  • Laure Verret

    (Université de Toulouse; CNRS, UPS)

  • Lionel Dahan

    (Université de Toulouse; CNRS, UPS)

Abstract

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals – the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.

Suggested Citation

  • Fares J. P. Sayegh & Lionel Mouledous & Catherine Macri & Juliana Pi Macedo & Camille Lejards & Claire Rampon & Laure Verret & Lionel Dahan, 2024. "Ventral tegmental area dopamine projections to the hippocampus trigger long-term potentiation and contextual learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47481-4
    DOI: 10.1038/s41467-024-47481-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47481-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47481-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K.-Ulrich Bayer & Paul De Koninck & A. Soren Leonard & Johannes W. Hell & Howard Schulman, 2001. "Interaction with the NMDA receptor locks CaMKII in an active conformation," Nature, Nature, vol. 411(6839), pages 801-805, June.
    2. K.L. Shires & B.M. Da Silva & J.P. Hawthorne & R.G.M. Morris & S.J. Martin, 2012. "Synaptic tagging and capture in the living rat," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
    3. Masayuki Matsumoto & Okihide Hikosaka, 2009. "Two types of dopamine neuron distinctly convey positive and negative motivational signals," Nature, Nature, vol. 459(7248), pages 837-841, June.
    4. Tomonori Takeuchi & Adrian J. Duszkiewicz & Alex Sonneborn & Patrick A. Spooner & Miwako Yamasaki & Masahiko Watanabe & Caroline C. Smith & Guillén Fernández & Karl Deisseroth & Robert W. Greene & Ric, 2016. "Locus coeruleus and dopaminergic consolidation of everyday memory," Nature, Nature, vol. 537(7620), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    2. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Joana Mendes Duarte & Robin Nguyen & Marios Kyprou & Kaizhen Li & Anastasija Milentijevic & Carlo Cerquetella & Thomas Forro & Stéphane Ciocchi, 2024. "Hippocampal contextualization of social rewards in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    5. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
    6. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Seong-Hwan Hwang & Doyoung Park & Ji-Woo Lee & Sue-Hyun Lee & Hyoung F. Kim, 2024. "Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Nathan Bénac & G. Ezequiel Saraceno & Corey Butler & Nahoko Kuga & Yuya Nishimura & Taiki Yokoi & Ping Su & Takuya Sasaki & Mar Petit-Pedrol & Rémi Galland & Vincent Studer & Fang Liu & Yuji Ikegaya &, 2024. "Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Kazutaka Maeda & Ken-ichi Inoue & Masahiko Takada & Okihide Hikosaka, 2023. "Environmental context-dependent activation of dopamine neurons via putative amygdala-nigra pathway in macaques," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Xin-Yue Wang & Wen-Bin Jia & Xiang Xu & Rui Chen & Liang-Biao Wang & Xiao-Jing Su & Peng-Fei Xu & Xiao-Qing Liu & Jie Wen & Xiao-Yuan Song & Yuan-Yuan Liu & Zhi Zhang & Xin-Feng Liu & Yan Zhang, 2023. "A glutamatergic DRN–VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Adrien T. Stanley & Michael R. Post & Clay Lacefield & David Sulzer & Maria Concetta Miniaci, 2023. "Norepinephrine release in the cerebellum contributes to aversive learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Ruben Bosch & Britt Lambregts & Jessica Määttä & Lieke Hofmans & Danae Papadopetraki & Andrew Westbrook & Robbert-Jan Verkes & Jan Booij & Roshan Cools, 2022. "Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Xiaocen Fan & Jiachen Song & Chaonan Ma & Yanbo Lv & Feifei Wang & Lan Ma & Xing Liu, 2022. "Noradrenergic signaling mediates cortical early tagging and storage of remote memory," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Paul Leon Brown & Paul D Shepard, 2013. "Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    17. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    18. Tuan A. Nguyen & Henry L. Puhl & Kirk Hines & Daniel J. Liput & Steven S. Vogel, 2022. "Binary-FRET reveals transient excited-state structure associated with activity-dependent CaMKII - NR2B binding and adaptation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Ali Ghazizadeh & Okihide Hikosaka, 2022. "Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Johannes Rentzsch & Christina Shen & Maria C Jockers-Scherübl & Jürgen Gallinat & Andres H Neuhaus, 2015. "Auditory Mismatch Negativity and Repetition Suppression Deficits in Schizophrenia Explained by Irregular Computation of Prediction Error," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47481-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.