IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47098-7.html
   My bibliography  Save this article

Collective relational inference for learning heterogeneous interactions

Author

Listed:
  • Zhichao Han

    (ETH Zürich)

  • Olga Fink

    (EPFL)

  • David S. Kammer

    (ETH Zürich)

Abstract

Interacting systems are ubiquitous in nature and engineering, ranging from particle dynamics in physics to functionally connected brain regions. Revealing interaction laws is of fundamental importance but also particularly challenging due to underlying configurational complexities. These challenges become exacerbated for heterogeneous systems that are prevalent in reality, where multiple interaction types coexist simultaneously and relational inference is required. Here, we propose a probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods. First, it infers the interaction types of different edges collectively by explicitly encoding the correlation among incoming interactions with a joint distribution, and second, it allows handling systems with variable topological structure over time. We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types. The developed methodology constitutes a key element for understanding interacting systems and may find application in graph structure learning.

Suggested Citation

  • Zhichao Han & Olga Fink & David S. Kammer, 2024. "Collective relational inference for learning heterogeneous interactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47098-7
    DOI: 10.1038/s41467-024-47098-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47098-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47098-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bai, Zhidong & Wong, Wing-Keung & Zhang, Bingzhi, 2010. "Multivariate linear and nonlinear causality tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    3. Chu, Amanda M.Y. & Lv, Zhihui & Wagner, Niklas F. & Wong, Wing-Keung, 2020. "Linear and nonlinear growth determinants: The case of Mongolia and its connection to China," Emerging Markets Review, Elsevier, vol. 43(C).
    4. Ganesh R & Naresh G & Thiyagarajan S, 2020. "Manifesting Overconfidence Bias and Disposition Effect in the Stock Market," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 19(3), pages 257-284, December.
    5. Zhidong Bai & Yongchang Hui & Dandan Jiang & Zhihui Lv & Wing-Keung Wong & Shurong Zheng, 2018. "A new test of multivariate nonlinear causality," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-14, January.
    6. Adhiraj Sodhi & Cesario Mateus & Irina Mateus & Aleksandar Stojanovic, 2023. "Determinants of Repurchase Size: Evidence from the UK," JRFM, MDPI, vol. 16(9), pages 1-29, September.
    7. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    8. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    9. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    10. Nguyen Huu Hau & Tran Trung Tinh & Hoa Anh Tuong & Wing-Keung Wong, 2020. "Review of Matrix Theory with Applications in Education and Decision Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 28-69, March.
    11. Tao, Nan & Wu, Tiantian & Yan, Guo, 2024. "To the test of economic recovery: The swings in energy resource prices," Resources Policy, Elsevier, vol. 89(C).
    12. Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018. "Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.
    13. Choudhry, Taufiq & Hassan, Syed S. & Shabi, Sarosh, 2015. "Relationship between gold and stock markets during the global financial crisis: Evidence from nonlinear causality tests," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 247-256.
    14. Andy Wui-Wing Cheng & Nikolai Sheung-Chi Chow & David Kam-Hung Chui & Wing-Keung Wong, 2019. "The Three Musketeers Relationships between Hong Kong, Shanghai and Shenzhen Before and After Shanghai–Hong Kong Stock Connect," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    15. Owyong, David & Wong, Wing-Keung & Horowitz, Ira, 2015. "Cointegration and causality among the onshore and offshore markets for China's currency," Journal of Asian Economics, Elsevier, vol. 41(C), pages 20-38.
    16. GUORUI BIAN & MICHAEL McALEER & WING-KEUNG WONG, 2013. "Robust Estimation And Forecasting Of The Capital Asset Pricing Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-18.
    17. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    18. Vo, Duc, 2019. "The Impact of Foreign Direct Investment on Environment Degradation: Evidence from Emerging Markets in Asia," MPRA Paper 103292, University Library of Munich, Germany.
    19. Gupta, Rangan & Risse, Marian & Volkman, David A. & Wohar, Mark E., 2019. "The role of term spread and pattern changes in predicting stock returns and volatility of the United Kingdom: Evidence from a nonparametric causality-in-quantiles test using over 250 years of data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 391-405.
    20. Jingliang Xiao & Robert D Brooks & Wing-Keung Wong, 2009. "Garch And Volume Effects In The Australian Stock Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-20.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47098-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.