IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45922-8.html
   My bibliography  Save this article

A neurophysiological basis for aperiodic EEG and the background spectral trend

Author

Listed:
  • Niklas Brake

    (McGill University
    McGill University)

  • Flavie Duc

    (McGill University)

  • Alexander Rokos

    (McGill University)

  • Francis Arseneau

    (McGill University)

  • Shiva Shahiri

    (McGill University)

  • Anmar Khadra

    (McGill University)

  • Gilles Plourde

    (McGill University)

Abstract

Electroencephalograms (EEGs) display a mixture of rhythmic and broadband fluctuations, the latter manifesting as an apparent 1/f spectral trend. While network oscillations are known to generate rhythmic EEG, the neural basis of broadband EEG remains unexplained. Here, we use biophysical modelling to show that aperiodic neural activity can generate detectable scalp potentials and shape broadband EEG features, but that these aperiodic signals do not significantly perturb brain rhythm quantification. Further model analysis demonstrated that rhythmic EEG signals are profoundly corrupted by shifts in synapse properties. To examine this scenario, we recorded EEGs of human subjects being administered propofol, a general anesthetic and GABA receptor agonist. Drug administration caused broadband EEG changes that quantitatively matched propofol’s known effects on GABA receptors. We used our model to correct for these confounding broadband changes, which revealed that delta power, uniquely, increased within seconds of individuals losing consciousness. Altogether, this work details how EEG signals are shaped by neurophysiological factors other than brain rhythms and elucidates how these signals can undermine traditional EEG interpretation.

Suggested Citation

  • Niklas Brake & Flavie Duc & Alexander Rokos & Francis Arseneau & Shiva Shahiri & Anmar Khadra & Gilles Plourde, 2024. "A neurophysiological basis for aperiodic EEG and the background spectral trend," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45922-8
    DOI: 10.1038/s41467-024-45922-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45922-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45922-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niansheng Ju & Yang Li & Fang Liu & Hongfei Jiang & Stephen L. Macknik & Susana Martinez-Conde & Shiming Tang, 2020. "Spatiotemporal functional organization of excitatory synaptic inputs onto macaque V1 neurons," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Mototaka Suzuki & Matthew E. Larkum, 2017. "Dendritic calcium spikes are clearly detectable at the cortical surface," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Gwendal Le Masson & Sylvie Renaud-Le Masson & Damien Debay & Thierry Bal, 2002. "Feedback inhibition controls spike transfer in hybrid thalamic circuits," Nature, Nature, vol. 417(6891), pages 854-858, June.
    4. M. Florencia Iacaruso & Ioana T. Gasler & Sonja B. Hofer, 2017. "Synaptic organization of visual space in primary visual cortex," Nature, Nature, vol. 547(7664), pages 449-452, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biagio Mandracchia & Corey Zheng & Suraj Rajendran & Wenhao Liu & Parvin Forghani & Chunhui Xu & Shu Jia, 2024. "High-speed optical imaging with sCMOS pixel reassignment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45922-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.