IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45921-9.html
   My bibliography  Save this article

Organization of reward and movement signals in the basal ganglia and cerebellum

Author

Listed:
  • Noga Larry

    (the Hebrew University)

  • Gil Zur

    (the Hebrew University)

  • Mati Joshua

    (the Hebrew University)

Abstract

The basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view. To compare the basal ganglia and the cerebellum directly, we recorded from oculomotor regions in both structures from the same monkeys. We partitioned the trial-by-trial variability of the neurons into reward and eye-movement signals to compare the coding across structures. Reward expectation and movement signals were the most pronounced in the output structure of the basal ganglia, intermediate in the cerebellum, and the smallest in the input structure of the basal ganglia. These findings suggest that reward and movement information is sharpened through the basal ganglia, resulting in a higher signal-to-noise ratio than in the cerebellum.

Suggested Citation

  • Noga Larry & Gil Zur & Mati Joshua, 2024. "Organization of reward and movement signals in the basal ganglia and cerebellum," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45921-9
    DOI: 10.1038/s41467-024-45921-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45921-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45921-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark J. Wagner & Tony Hyun Kim & Joan Savall & Mark J. Schnitzer & Liqun Luo, 2017. "Cerebellar granule cells encode the expectation of reward," Nature, Nature, vol. 544(7648), pages 96-100, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    2. Ellen Boven & Joseph Pemberton & Paul Chadderton & Richard Apps & Rui Ponte Costa, 2023. "Cerebro-cerebellar networks facilitate learning through feedback decoupling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Taisei Sugiyama & Nicolas Schweighofer & Jun Izawa, 2023. "Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Naveen Sendhilnathan & Andreea C. Bostan & Peter L. Strick & Michael E. Goldberg, 2024. "A cerebro-cerebellar network for learning visuomotor associations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Naveen Sendhilnathan & Anna Ipata & Michael E. Goldberg, 2021. "Mid-lateral cerebellar complex spikes encode multiple independent reward-related signals during reinforcement learning," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Chris. I. De Zeeuw & Julius Koppen & George. G. Bregman & Marit Runge & Devika Narain, 2023. "Heterogeneous encoding of temporal stimuli in the cerebellar cortex," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45921-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.