IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45753-7.html
   My bibliography  Save this article

Exosomes define a local and systemic communication network in healthy pancreas and pancreatic ductal adenocarcinoma

Author

Listed:
  • Bárbara Adem

    (Universidade do Porto
    Universidade do Porto)

  • Nuno Bastos

    (Universidade do Porto
    Universidade do Porto)

  • Carolina F. Ruivo

    (Universidade do Porto)

  • Sara Sousa-Alves

    (Universidade do Porto)

  • Carolina Dias

    (Universidade do Porto
    Universidade do Porto)

  • Patrícia F. Vieira

    (Universidade do Porto
    Universidade do Porto)

  • Inês A. Batista

    (Universidade do Porto
    Universidade do Porto)

  • Bruno Cavadas

    (Universidade do Porto)

  • Dieter Saur

    (Technical University Munich
    German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK))

  • José C. Machado

    (Universidade do Porto
    Universidade do Porto
    P.CCC Porto Comprehensive Cancer Center Raquel Seruca)

  • Dawen Cai

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Sonia A. Melo

    (Universidade do Porto
    Universidade do Porto
    P.CCC Porto Comprehensive Cancer Center Raquel Seruca)

Abstract

Pancreatic ductal adenocarcinoma (PDAC), a lethal disease, requires a grasp of its biology for effective therapies. Exosomes, implicated in cancer, are poorly understood in living systems. Here we use the genetically engineered mouse model (ExoBow) to map the spatiotemporal distribution of exosomes from healthy and PDAC pancreas in vivo to determine their biological significance. We show that, within the PDAC microenvironment, cancer cells establish preferential communication routes through exosomes with cancer associated fibroblasts and endothelial cells. The latter being a conserved event in the healthy pancreas. Inhibiting exosomes secretion in both scenarios enhances angiogenesis, underscoring their contribution to vascularization and to cancer. Inter-organ communication is significantly increased in PDAC with specific organs as most frequent targets of exosomes communication occurring in health with the thymus, bone-marrow, brain, and intestines, and in PDAC with the kidneys, lungs and thymus. In sum, we find that exosomes mediate an organized intra- and inter- pancreas communication network with modulatory effects in vivo.

Suggested Citation

  • Bárbara Adem & Nuno Bastos & Carolina F. Ruivo & Sara Sousa-Alves & Carolina Dias & Patrícia F. Vieira & Inês A. Batista & Bruno Cavadas & Dieter Saur & José C. Machado & Dawen Cai & Sonia A. Melo, 2024. "Exosomes define a local and systemic communication network in healthy pancreas and pancreatic ductal adenocarcinoma," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45753-7
    DOI: 10.1038/s41467-024-45753-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45753-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45753-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathilde Mathieu & Nathalie Névo & Mabel Jouve & José Ignacio Valenzuela & Mathieu Maurin & Frederik J. Verweij & Roberta Palmulli & Danielle Lankar & Florent Dingli & Damarys Loew & Eric Rubinstein &, 2021. "Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Ayuko Hoshino & Bruno Costa-Silva & Tang-Long Shen & Goncalo Rodrigues & Ayako Hashimoto & Milica Tesic Mark & Henrik Molina & Shinji Kohsaka & Angela Di Giannatale & Sophia Ceder & Swarnima Singh & C, 2015. "Tumour exosome integrins determine organotropic metastasis," Nature, Nature, vol. 527(7578), pages 329-335, November.
    3. Yuqin Men & Julia Yelick & Shijie Jin & Yang Tian & Ming Sum R. Chiang & Haruki Higashimori & Eoin Brown & Rachel Jarvis & Yongjie Yang, 2019. "Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koki Kunitake & Tadahaya Mizuno & Kazuki Hattori & Chitose Oneyama & Mako Kamiya & Sadao Ota & Yasuteru Urano & Ryosuke Kojima, 2024. "Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis and release regulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Biaobin Jiang & Quanhua Mu & Fufang Qiu & Xuefeng Li & Weiqi Xu & Jun Yu & Weilun Fu & Yong Cao & Jiguang Wang, 2021. "Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Zhen-Xing Wang & Zhong-Wei Luo & Fu-Xing-Zi Li & Jia Cao & Shan-Shan Rao & Yi-Wei Liu & Yi-Yi Wang & Guo-Qiang Zhu & Jiang-Shan Gong & Jing-Tao Zou & Qiang Wang & Yi-Juan Tan & Yan Zhang & Yin Hu & Yo, 2022. "Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Di-Ao Liu & Kai Tao & Bin Wu & Ziyan Yu & Malwina Szczepaniak & Matthew Rames & Changsong Yang & Tatyana Svitkina & Yueyao Zhu & Fengyuan Xu & Xiaolin Nan & Wei Guo, 2023. "A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Feng Xie & Xiaoxue Zhou & Peng Su & Heyu Li & Yifei Tu & Jinjin Du & Chen Pan & Xiang Wei & Min Zheng & Ke Jin & Liyan Miao & Chao Wang & Xuli Meng & Hans Dam & Peter Dijke & Long Zhang & Fangfang Zho, 2022. "Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Shijie Jin & Xuan Chen & Yang Tian & Rachel Jarvis & Vanessa Promes & Yongjie Yang, 2023. "Astroglial exosome HepaCAM signaling and ApoE antagonization coordinates early postnatal cortical pyramidal neuronal axon growth and dendritic spine formation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Ghulam Hassan Dar & Cláudia C. Mendes & Wei-Li Kuan & Alfina A. Speciale & Mariana Conceição & André Görgens & Inna Uliyakina & Miguel J. Lobo & Wooi F. Lim & Samir EL Andaloussi & Imre Mäger & Thomas, 2021. "GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Hayden Weng Siong Tan & Guang Lu & Han Dong & Yik-Lam Cho & Auginia Natalia & Liming Wang & Charlene Chan & Dennis Kappei & Reshma Taneja & Shuo-Chien Ling & Huilin Shao & Shih-Yin Tsai & Wen-Xing Din, 2022. "A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Wolasse Manfouo Wilfred Quentin, 2024. "Exosomes as Mediators of Cancer Metastasis: Unraveling the ‘Seed and Soil’ Hypothesis," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(9), pages 1038-1046, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45753-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.